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Abstract

The investigation of thermodynamic properties of ligand binding is a classical

�eld of (bio)chemistry and (bio)physics. Commonly, an algebraic description using

polynomials (e.g. the binding polynomial) and rational functions (e.g. titration

curves) is used to characterize systems of molecules and their ligand(s). However,

the algebraic model is a result of the probabilistic setup of statistical mechanics and

its concept of the Grand Canonical Partition Function. In this work, we reconsider

the decoupled sites representation (DSR), a theoretical tool to regard an overall

titration curve as sum of classical Henderson-Hasselbalch ligand binding curves from

a stochastic point of view. Our work closes the circle from the initial stochastic

model, to an algebraic description in which the DSR was developed and analyzed,

back to its meaning in statistical mechanics and stochastics. In this regard, we

translate results in the periphery of the DSR which were derived within the algebraic

model into stochastics. The shifted point of view facilitates some proofs and physical

interpretations and provides the basis for future work which might investigate how

certain phenomenona of the algebraic concept can be interpreted stochastically.
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1 Introduction

A classical �eld of chemistry is the investigation of pH-dependent binding of protons to

di�erent binding sites of a molecule in solution. In basic experiments a certain amount

of protons (e.g. HCl) is added and the change of free protons (∼pH) is measured. The

number of protons which are absorbed by the solute is given by the di�erence of added

protons and increase of free protons. Thus, the overall binding curve can be measured,

which represents the average number of protons bound to a single solute molecule. From

a stochastic point of view, a single molecule M with n binding sites can be interpreted as

an n-tuple of Bernoulli variables M = (X1, ..., Xn) with Xi ∈ {0, 1} indicating whether

binding site i is occupied (Xi = 1) or not (Xi = 0). Its distribution on the set {0, 1}n

depends on the proton activity Λ = 10−pH . This pH-dependent distribution of M de�nes

a pH-dependent distribution of the sum of occupied binding sites S (�overall binding�)

S(X1, ..., Xn) :=
n∑
i=1

Xi (1)

which takes values in {0, ..., n}. The overall proton binding of the whole population of a

certain type of molecule is what can be measured by the previously described experiments.

Assuming that the individual molecules bind protons stochastically independently, these

rescaled overall binding curves of the whole population can be interpreted as the expected

value of the pH-dependent distribution of S, according to the Law of Large Numbers.

Thus, the overall titration curve Ψ(Λ) is given by

Ψ(Λ) := EΛS, (2)

with EΛS denoting the expected value of S, depending on Λ (EΛ is an operator acting

on the adjacent variable). Analogously, the pH-dependent binding curve of an individual

site i is given by

Ψi(Λ) := EΛXi. (3)

For a molecule with only one binding site, Ψ(Λ) = Ψ1(Λ) is of shape

Ψ(Λ) =
10pKaΛ

10pKaΛ + 1
(4)

where pKa is the negative common logarithm of the activity of the ligand at which the

expected value of the site being occupied is 1
2
. Binding curves of the structure described

by Eq. (4) are called Henderson-Hasselbalch titration curves [1, 2]. For molecules with

several binding sites, the overall titration curve is in general not of the shape presented

in Eq. (4), since it is the sum of the binding curves of the individual sites (Eqs. (1),(2)).

Additionally, the titration curves of the individual sites can also show huge deviations
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from curves described by Eq. (4) which is a result of interaction between (or dependency

of) the binding sites [3, 4, 5, 6]. Onufriev et al. [7] showed that for any given overall

titration curve a hypothetical molecule exists, which is de�ned by the binding energies of

its sites, such that each titration curve of an individual site is of shape given by Eq. (4)

and all sum up to the given overall titration curve. This statement is called the decoupled

sites representation (DSR).

In this work, we translate the DSR into stochastics. As natural �rst step, we show that

decoupled sites in terms of the algebraic model (which means every binding site exhibits

a standard Henderson-Hasselbalch binding curve) correspond to the stochastic indepen-

dence of the Bernoulli variables describing the binding state of the individual sites, for

every activity Λ.

Secondly, we reconsider the DSR for molecules with two di�erent types of interacting

binding sites [8, 9] �each type capable to bind only a certain type of ligand (L1 or L2, e.g.

protons or electrons)� from a stochastic point of view. A result for molecules with two

di�erent types of ligands is that, if both overall titration curves (for both ligands) shall

be preserved, only the binding sites for the same type of ligand can be decoupled [8, 9].

However, due to secondary interaction of the binding sites, the one-dimensional titration

curves for �xed activity of the other ligand can deviate from the classical Henderson-

Hasselbalch shape. We show that the decoupling with two types of ligands, presented

by Martini et al. [8] corresponds to conditional stochastic independence of the Bernoulli

variables describing the binding state of the individual sites for the same type of lig-

and. More precisely, the Bernoulli variables describing the binding sites for ligand L1 are

stochastically independent, if a microstate k2 for ligand L2 is �xed. This observation also

shows that the two-dimensional titration curves of individual sites can be regarded as

superposition of one-dimensional Henderson-Hasselbalch curves in a decoupled system.

2 The decoupled sites representation for one type of

ligand

2.1 The biophysical setup

We summarize the theoretical algebraic setup of ligand binding and the decoupled sites

representation (for more details on the DSR see [7] and [10]).

2.1.1 Molecules with several ligand binding sites

We consider a certain molecule M with n ligand binding sites and investigate the ligand-

activity dependent average binding to the binding sites. To characterize the ligand binding

properties of the molecule we use a model which incorporates binding constants and pair-
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wise interaction constants. Thus, molecule M can be characterized by n binding constants

gM1 , ..., g
M
n and n(n−1)

2
pairwise interaction constants wM1,2, ..., w

M
1,n, ..., w

M
n−1,n, where w

M
i,j is

the interaction constant of the i-th and j-th ligand binding sites. This model is not the

most general one, since here it is assumed that the overall interaction of e.g. three bind-

ing sites is composed of three pairwise interactions which it not necessarily true. A more

general model would incorporate interaction constants of higher order (e.g. wM1,2,3). Even

though we are aware of this possible generalization, we use the simpli�ed model since the

results on which our work is based, such as the DSR, can be transfered directly to the

more general model. For instance, for a molecule being decoupled means, in the simpli�ed

model, that all pairwise interaction constants are equal to one, which translates to a de-

coupled molecule in the generalized model by setting all additional interaction constants

of higher order to one, too. Thus, the simpler model facilitates notation and is absolutely

su�cient for our purposes. Moreover, this model �with only pairwise interaction� has

already frequently been used in scienti�c literature (e.g. [4, 7, 10, 11]).

It is useful to allow gi, wi,j ∈ C \ {0} =: C∗ ∀i, j ∈ {1, ..., n}. Thus, every molecule can

be identi�ed with at least one element

M ∈ C∗
n(n+1)

2 . (5)

As the binding sites do not have any natural order, we use an equivalence relation ∼ to

get a well de�ned mapping of a molecule to an equivalence class of tuples [10]. We use

the notation

H :=
C∗

n(n+1)
2

∼
for the set of molecules (equivalence classes of tuples).

2.1.2 The binding polynomial

To facilitate notation we use the following symbols:

• k := (xk1, ..., x
k
n) denotes a realization of the random Bernoulli tuple (X1, ..., Xn).

We use the term �microstate�.

• K := {0, 1}n denotes the image set of (X1, ..., Xn), the set of all microstates.

• S(k) denotes the realization of random variable S in Eq. (1) for microstate k.

• g(k) denotes the probability constant of microstate k which is given by

g(k) :=
∏

i∈{1,...,n}

(
g
xki
i

∏
i<j

w
xki x

k
j

i,j

)
. (6)
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Eq. (6) is a result of the assumption that the energy of a state is the sum of the

binding energies and pairwise interaction energies.

Using this notation, the binding polynomial (bp) in the variable Λ is de�ned by

Φ(M) :=
∑
k∈K

g(k)ΛS(k) (7)

[3, 12, 13]. The bp of a molecule M characterizes the family of distributions of the random

variable S (Eq. (1)) as function of the ligand activity Λ by

PΛ(S = m) =

∑
{k|S(k)=m}

g(k)Λm

Φ(M)

with PΛ(S = m) denoting the probability of S being equal to m at a certain ligand activity

Λ (we will explain this in more detail in the next subsection). Note that the bp de�nes

the overall titration curve (Eq. (2)) and that, since all microstates with the same number

of bound ligand molecules are summarized, the titration curves of individual sites can not

be regained from the bp of a molecule.

2.1.3 Titration curves of a certain site and of overall ligand binding

Let M = (g1, ..., gn, w1,2, ..., wn−1,n) be a molecule. Then the expected occupation of site

i is given by

Ψi(Λ) =
Ei(M)

Φ(M)
= EΛXi (8)

with

Ei(M) =
∑

{k∈K|xki =1}

g(k)ΛS(k) (9)

and Φ(M) denoting the bp of the molecule. Eq. (9) means that only those microstates in

which site i is occupied, de�ne the polynomial Ei(M) [14, 7, 12, 13]. Consequently, the

overall titration curve has the shape

Ψ(Λ) =
n∑
i=1

Ψi(Λ) =

∑n
i=1 Ei(M)

Φ(M)
=

n∑
i=1

EΛXi = EΛS. (10)

Proposition 1 shows how Eq. (10) can be rewritten.

Proposition 1 Let M be a molecule with

Φ(M) = anΛn + an−1Λn−1 + an−2Λn−2 + ...+ a1Λ + 1.

-833-



Then its overall titration curve is given by

Ψ(Λ) =
nanΛn + (n− 1)an−1Λn−1 + (n− 2)an−2Λn−2 + ...+ a1Λ

Φ(M)
. (11)

A proof can be found in [10], an alternative proof within the stochastic setup is given

below:

Proof. Use the stochastic setup, described in the next subsection to calculate the distri-

bution of S and Eqs.(2), (10):

PΛ(S = m) =

∑
{k|S(k)=m}

g(k)Λm

Φ(M)
=
amΛm

Φ(M)
.

The titration curve is given by the expected value of S. �

With this framework we can express the DSR as a proposition (see [7, 10]):

Proposition 2 [The decoupled sites representation]

Let M = (gM1 , ..., g
M
n , ..., w

M
n−1,n) ∈ H be a molecule. Then a unique molecule

N = (g1, ..., gn, 1, ..., 1) ∈ H exists, such that

Φ(M) = Φ(N).

Moreover, the entries of (− 1

g1

, ...,− 1

gn
) are the roots of Φ(M) (with multiplicity). (12)

2.2 A stochastic interpretation of this model

In the following, we investigate the stochastic features of the model presented in the

previous subsection.

Remark 1 In the previously described setup, which our former work was based on

[10, 8, 9], we allowed the binding and interaction constants to be complex valued. This

makes the use of the fundamental theorem of algebra possible and facilitates theory.

However, a complex valued binding constant of a certain binding site translates into a

"complex probability measure". As a discussion of this phenomenon and of its possible

physical interpretations is a separate topic, which we do not focus on in this work, we

assume that all molecules which we use in this work have real binding and interaction

constants. Moreover, instead of regarding equivalence classes we will focus on a map

of tuples on measures. This is, in the following section, of advantage as otherwise the

equivalence relation has also to be transfered to the image space of measures on K, which

leads to a more complicated notation than necessary. However, all results can be directly

transfered to the case with equivalence classes of tuples and of measures.
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We de�ne the map

P : R+m −→ L(K)(Λ) (13)

P (M)({k},Λ) =
g(k)ΛS(k)

Φ(M)
(14)

which maps a tuple to a family of distributions on the set of microstates K which is

parameterized by Λ ∈ [0,∞). L(K)(Λ) denotes the set of functions f : [0,∞) −→ L(K)

mapping the activity Λ onto a distribution on K.

Lemma 1 The map P given by Eq. (14) mapping a tuple onto a family of measures is

injective.

Proof. Let M and N be two tuples and P (M) = P (N). Then P (M)({0}n,Λ) =

P (N)({0}n,Λ) for every Λ. This implies that Φ(M) = Φ(N). Since the measures of

a state k with only one site occupied shall be identical for every value of Λ we receive

gMi = gNi . Consequently, with the same argument for states with two sites occupied, this

gives identical interaction constants of M and N . �

Since the map P is injective, we can use the letter M also for its image P (M) (and

MΛ for P (M)(◦,Λ) with �xed Λ). Moreover, accordingly, we use the notation M({k})
for P (M)({k}) describing the probability of microstate k depending on Λ. Note that

the de�nition given by Eq. (14) is the common interpretation of the probability of a

certain state de�ned by the binding and interaction constants (for example see [15]). We

will investigate which properties, the family of distributions of a tuple has. The random

variables Xi will always denote the Bernoulli variables indicating whether site i is occupied

(Xi = 1) or not (Xi = 0).

Lemma 2 Let M = (g1, ..., gn, 1, ..., 1) be a decoupled system. Then ∀Λ ∈ [0,∞)

MΛ(Xi = 1) =
giΛ

giΛ + 1
(15)

Proof. Let

M−i := (g1, ..., gi−1, gi+1, ..., gn, 1, ..., 1)

denote the tuple with n− 1 binding sites describing M as if site i was missing. Then,

MΛ(Xi = 1) = EΛXi
(8)
=
Ei(M)

Φ(M)

(6),(9)
=

giΛΦ(M−i)

Φ(M)

(12)
=

=

giΛ
∏
k 6=i

(Λ + 1
gk

)
∏
k 6=i

gk∏
k

(Λ + 1
gk

)
∏
k

gk
=

Λ

Λ + 1
gi

=
giΛ

giΛ + 1
.

�
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Remark 2 Note that Eq. (15) also describes the Henderson-Hasselbalch titration curve,

since for a Bernoulli variable the expected value equals the probability of being 1.

Proposition 3 Let M = (g1, ..., gn, 1, ..., 1) be a decoupled system, and let MΛ be the cor-

responding family of measures on the power set of K. Let {Xi}1≤i≤n be the Bernoulli vari-

ables which describe the occupation state of a certain site. Then ∀Λ ∈ [0,∞), {Xi}1≤i≤n

are stochastically independent.

Proof. Let m1 +m2 = n and let k0 denote the corresponding microstate of the following

event. Then

MΛ(Xi1 = ... = Xim1
= 0, Xj1 = ... = Xjm2

= 1) = MΛ({k0}) =

(14)
=

(
m2∏
l=1

gjl

)
Λm2

Φ(M)
=

m2∏
l=1

(gjlΛ)
m1∏
l=1

1

Φ(M)

(12)
=

m2∏
l=1

(gjlΛ)
m1∏
l=1

1

n∏
i=1

(giΛ + 1)
=

(15)
=

m1∏
l=1

MΛ(Xil = 0)

m2∏
l=1

MΛ(Xjl = 1).

The Law of Total Probability shows that the probability can be factored also in the case

of m1 +m2 < n. �

Proposition 3 shows that the natural intuition, saying that decoupled sites in the algebraic

system correspond to stochastic independence of the Bernoulli variables in the stochastic

setup, is correct. This gives the following view on the decoupled sites representation

for one type of ligand: A molecule M with n binding sites for the ligand is given. It

corresponds to a family of measures on {0, 1}n which is parametrized by the ligand activity

Λ. We look for a family of product measures N on {0, 1}n such that S(M) = S(N) for

any choice of Λ. S(M) denotes the distribution of the function S with respect to the

measure M on the domain.

Thus, the question arises how a decoupled molecule with two di�erent types of ligands can

be interpreted stochastically, since we showed in a former work that not all interaction

constants can be set to 1 and that the one-dimensional titration curves do not have to be

of classical HH shape [8]. We will investigate this phenomenon in the next section.

-836-



3 The decoupled sites representation for two types of

ligands

3.1 The biophysical setup

Analogously to the structure of the previous section we shortly summarize the theoretical

setup of ligand binding for di�erent types of ligands. For more details on the adapted

equivalence relation and the DSR for two types of ligands see [8].

3.1.1 Molecules with several ligand binding sites for two di�erent types of

ligands

Analogously to subsection 2.1.1, we identify a molecule M with n1 binding sites for ligand

L1 and n2 ligand binding sites for ligand L2 with an equivalence class of tuples. The entries

of the tuple represent binding constants of the sites and pairwise interaction constants.

To distinguish between sites for the di�erent ligands we use the indices 1, ..., n1 for the

binding sites for ligand L1 and A1, ..., An2 for those for ligand L2.

3.1.2 The binding polynomial

Again, K = {0, 1}n denotes the set of all microstates, with n := n1 + n2, and g(k) the

probability constant of microstate k. However, we split S and k and extend the model to

• S1(k) :=
n1∑
i=1

xki , denoting the number of bound ligands L1 in microstate k

• S2(k) :=
An2∑
i=A1

xki , denoting the number of bound ligands L2 in microstate k

• k = (k1, k2) = (xk1, ..., x
k
n1︸ ︷︷ ︸

=:k1

, xkA1
, ..., xkAn2 )︸ ︷︷ ︸

=:k2

, denoting a microstate.

Thus, as generalization of the single ligand case, the binding polynomial can be written

Φ(M) :=
∑
k∈K

g(k)ΛS1(k)κS2(k) (16)

with κ the activity of ligand L2.

3.1.3 Titration curves of a certain site and of overall ligand binding

Let M = (g1, ..., gAn2 , w1,2, ..., wAn2−1,An2
) be a molecule. Then the expected occupation

of site i is given by

Ψi(Λ, κ) =
Ei(M)

Φ(M)
= EΛ,κXi (17)
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with

Ei(M) =
∑

{k∈K|xki =1}

g(k)ΛS1(k)κS2(k) (18)

and Φ(M) the bp of the molecule. The splitting of the number of all binding sites into

two di�erent groups leads to two overall titration curves of shape

ΨL1(Λ, κ) =

n1∑
i=1

Ψi(Λ, κ) =

∑n1

i=1Ei(M)

Φ(M)
= EΛ,κS1 (19)

ΨL2(Λ, κ) =

n2∑
i=1

ΨAi(Λ, κ) =

∑n2

i=1EAi(M)

Φ(M)
= EΛ,κS2 (20)

The overall titration curves can be rewritten, analogously to Proposition 1.

Proposition 4 Let M be a molecule with

Φ(M) = an1,n2Λ
n1κn2 + an1,n2−1Λn1κn2−1 + ...

...+ an1,0Λn + an1−1,n2Λ
n1−1κn2 + ...+ a0,1κ+ 1.

Then
n1∑
i=1

Ei(M) = n1

(
n2∑
i=0

an1,iκ
i

)
Λn1+

+(n1 − 1)

(
n2∑
i=0

an1−1,iκ
i

)
Λn1−1 + ...+

(
n2∑
i=0

a1,iκ
i

)
Λ (21)

and
n2∑
i=1

EAi(M) = n2

(
n1∑
i=0

ai,n2Λ
i

)
κn2+

+(n2 − 1)

(
n1∑
i=0

ai,n2−1Λi

)
κn2−1 + ...+

(
n1∑
i=0

ai,1Λi

)
κ. (22)

Eqs. (21) and (22) imply that the bp determines both overall titration curves.

Proof. Use the stochastic setup (Eq. (24)) to calculate the distribution of S1 depending

on Λ and κ and use Eq. (19). �

3.1.4 The decoupled sites representation for two types of ligands

Martini et al. [8] showed that in the case of two di�erent types of ligands and the

constraint that both overall titration curves of a molecule M shall be preserved, there

is not in general a molecule N , in which all interaction constants are trivial and which

possesses the same overall titration curves. Thus, we call a molecule with di�erent types

of ligands decoupled if all interaction constants of binding sites for the same type of ligand
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are equal to one. We have already previously formulated the following conjecture which

was proven for the cases of (n1, 1) and (2, 2) binding sites [9, 8].

Conjecture 1 Let

M = (gM1 , ..., g
M
n1
, gMA1

, ..., gMAn2 , w
M
1,2, ..., w

M
An2−1,An2

)

be a molecule with n1 binding sites for ligand L1 and n2 binding sites for ligand L2. Then

at least one molecule

N = (g1, ..., gn1 , gA1 , ..., gAn2 , w1,2, ..., wAn2−1,An2
)

exists, with wi,j = 1 ∀{i, j} ⊂ {1, 2, ..., n1}, or {i, j} ⊂ {A1, A2, ..., An2}

and

Φ(M) = Φ(N).

The molecule N is called �decoupled�.

Martini et al. [8] showed that even though in a decoupled molecule the binding sites for

the same type of ligands do not interact, the one-dimensional titration curves, given when

the activity of the second ligand is �xed, are not in general of HH shape. In the following

we will investigate how this non-HH shape can be interpreted stochastically and where

HH titration curves are hidden.

3.2 A stochastic interpretation of this model

All tuples in this section are assumed to have real valued, positive interaction and binding

constants. Analogously to subsection 2.2, we consider the map

P : R+m −→ L(K)(Λ, κ) (23)

P (M)({k},Λ, κ) =
g(k)ΛS1(k)κS2(k)

Φ(M)
(24)

We will again use the letter M as well for its image P (M) to facilitate notation. Moreover,

note that we de�ned the map P again on the set of tuples, without using the equivalence

relation, to avoid transferring it to the set of measures. Using the equivalence relation

would only lead to a more complicated notation. Before we prove some general statements,

we will give an illustrating example.

Example 1 We choose a hypothetical decoupled molecule

M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2,
3

2
, 2, 1,

3

2
,
8

3
)
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with two binding sites for ligand L1 and one binding site for ligand L2. These binding and

interaction energies were chosen as example in which the polynomial and the probabilities

of the states are easy to calculate. For a temperature of 300◦ Kelvin these constants

translate to the binding and interaction energies of −(1.7, 1.0, 1.7, 0, 1, 2.5) in kJ/mol,

since gi = exp(−βGi) with β = 1
RT

and T the absolute temperature in Kelvin and R

the Boltzmann constant. We will not present the translation of constants into energies

anymore, in the following examples. Thus, let X1, X2 be the Bernoulli variables describing

the binding state of the sites 1 and 2. The binding polynomial of M is given by

Φ(M) = 24Λ2κ+ 3Λ2 + 14Λκ+ 3.5Λ + 2κ+ 1.

Moreover,

MΛ,κ(X1 = 1) =
24Λ2κ+ 3Λ2 + 6Λκ+ 2Λ

Φ(M)
(25)

MΛ,κ(X2 = 1) =
24Λ2κ+ 3Λ2 + 8Λκ+ 1.5Λ

Φ(M)
(26)

MΛ,κ(X1 = 1, X2 = 1) =
24Λ2κ+ 3Λ2

Φ(M)
(27)

For the choice (Λ, κ) = (1, 1) we receive

M1,1(X1 = 1) ·M1,1(X2 = 1) =
35

47.5
· 36.5

47.5
6= 27

47.5
= M1,1(X1 = 1, X2 = 1) (28)

which shows that the random variables X1 and X2 are not stochastically independent for

all choices of (Λ, κ). The situation changes if we consider the conditional distribution on

microstates {k ∈ K|k2 = 0} (distribution on the microstates in which site A is unoccupied)

or on {k ∈ K|k2 = 1} (distribution on the microstates in which site A is occupied):

Let MΛ,κ(·|k2 = i) denote the conditional distribution on {k ∈ K|k2 = i}. A conditional

binding polynomial of M is given by

Φ(M)|k2=0 = 3Λ2 + 3.5Λ + 1.

and thus

MΛ,κ(X1 = 1|k2 = 0) =
3Λ2 + 2Λ

Φ(M)|k2=0

(29)

MΛ,κ(X2 = 1|k2 = 0) =
3Λ2 + 1.5Λ

Φ(M)|k2=0

(30)

MΛ,κ(X1 = 1, X2 = 1|k2 = 0) =
3Λ2

Φ(M)|k2=0

(31)

which demonstrates independence of X1 and X2 with respect to the family of conditional
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distributions for any choice of (Λ, κ):

MΛ,κ(X1 = 1|k2 = 0) ·MΛ,κ(X2 = 1|k2 = 0) =
(3Λ2 + 2Λ)(3Λ2 + 1.5)

Φ(M)2
|k2=0

=

=
3Λ2Φ(M)|k2=0

Φ(M)2
|k2=0

=
3Λ2

Φ(M)|k2=0

= MΛ,κ(X1 = 1, X2 = 1|k2 = 0). (32)

This result might be obvious as in a decoupled system the one-dimensional titration curves

of an individual site is of HH shape if the activity κ of the second ligand equals zero.

However, conditional stochastic independence is also given if the condition is changed to

k2 = 1:

Φ(M)|k2=1 = 24Λ2κ+ 14Λκ+ 2κ.

MΛ,κ(X1 = 1|k2 = 1) =
24Λ2κ+ 6Λκ

Φ(M)|k2=1

(33)

MΛ,κ(X2 = 1|k2 = 1) =
24Λ2κ+ 8Λκ

Φ(M)|k2=1

(34)

MΛ,κ(X1 = 1, X2 = 1|k2 = 1) =
24Λ2κ

Φ(M)|k2=1

(35)

which gives

MΛ,κ(X1 = 1|k2 = 1) ·MΛ,κ(X2 = 1|k2 = 1) = MΛ,κ(X1 = 1, X2 = 1|k2 = 1) ∀(Λ, κ) ∈ [0,∞)2.

We will formulate the observation of Example 1 generally in Proposition 5.

Proposition 5 Let M be a decoupled molecule with n1 binding sites for ligand L1 and

n2 binding sites for ligand L2. Then the random variables {Xi}n1
i=1 are conditionally

stochastically independent for every condition k2 = c with c ∈ {0, 1}n2. Moreover,

∀ (Λ, κ) ∈ [0,∞)2 and 1 ≤ i ≤ n1 a g′c,i ∈ R+ exists such that

MΛ,κ(Xi = 1|k2 = c) =
g′c,iΛ

g′c,iΛ + 1
. (36)

Proof. Let k2 = c ∈ {0, 1}n2 describe the state

XAσ(1) = ... = XAσ(l) = 1 and XAσ(l+1)
= ... = XAσ(n2)

= 0

with σ a permutation of {1, ..., n2} and l ≤ n2. Let K|k2=c := {k ∈ K|k2 = c} and let

k ∈ K|k2=c. Then

g(k) =
l∏

i=1

gAσ(i) ·
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj

(37)
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and, due to the de�nition of conditional probability:

MΛ,κ(Xi = 1|k2 = c) =

∑
k∈K|k2=c,x

k
i =1

g(k)ΛS1(k)κl∑
k∈K|k2=c

g(k)ΛS1(k)κl
=

(37)
=

∑
k∈K|k2=c,x

k
i =1

(
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj
ΛS1(k)

)
∑

k∈K|k2=c

(
n1∏
j=1

(
gj

l∏
i=1

wj,Aσ(i)

)xkj
ΛS1(k)

)
The last term equals the description of the titration curve of site i in a decoupled molecule

with only n1 binding sites for one type of ligand and binding constants

g′c,j := gj

l∏
i=1

wj,Aσ(i) . (38)

Eq. (38) proves the statements (and allows to calculate g′c,i). �

Remark 3 In other words, Proposition 5 means that if we use the condition that the

second ligand occupied its binding sites according to a �xed microstate, the complex of

the molecule and the bound molecules of the second ligand can be regarded as a new

molecule with di�erent binding constants, but with independent sites. Note here that the

condition necessarily has to be that strict (microstate of the second ligand). A relaxation

is not possible, if independence of the sites for ligand L1 shall be guaranteed.

Corollary 1 The two-dimensional titration curve of a certain site of a decoupled molecule

is a parameterized convex combination of one-dimensional HH curves.

Proof.

MΛ,κ(Xi = 1) =
∑

c∈{0,1}n2

MΛ,κ(Xi = 1|k2 = c)MΛ,κ(k2 = c),

where MΛ,κ(Xi = 1|k2 = c) is a HH curve, according to Proposition 5, and∑
c∈{0,1}n2

MΛ,κ(k2 = c) = 1.

�

We will illustrate the statement of Corollary 1 with an example.

Example 2 Let M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2, 3
2
, 2, 1, 3

2
, 8

3
) be the decoupled mo-

lecule of Example 1. Then

MΛ,κ(X1 = 1) =
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= MΛ,κ(X1 = 1|k2 = 0)MΛ,κ(k2 = 0) +MΛ,κ(X1 = 1|k2 = 1)MΛ,κ(k2 = 1). (39)

Note that, since in this example, there is only one binding site for ligand L2, k2 ∈ {0, 1}
and thus MΛ,κ(k2 = 1) = MΛ,κ(XA = 1) is the titration curve of site A and MΛ,κ(k2 =

0) = 1 −MΛ,κ(k2 = 1). Thus, the titration curve of site 1 is a convex combination of

two HH curves weighted by the curve of site A. To calculate (39) we need to know the

distribution of XA:

MΛ,κ(XA = 0) =

=Φ(M)|k2=0︷ ︸︸ ︷
3Λ2 + 3.5Λ + 1

Φ(M)
MΛ,κ(XA = 1) =

=Φ(M)|k2=1︷ ︸︸ ︷
24Λ2κ+ 14Λκ+ 2κ

Φ(M)
(40)

and consequently

MΛ,κ(X1 = 1) =
3Λ2 + 2Λ

Φ(M)|k2=0

Φ(M)|k2=0

Φ(M)
+

24Λ2κ+ 6Λκ

Φ(M)|k2=1

Φ(M)|k2=1

Φ(M)
=

=
24Λ2κ+ 3Λ2 + 6Λκ+ 2Λ

Φ(M)
= (25).

The curves MΛ,κ(X1 = 1|k2 = 0), MΛ,κ(X1 = 1|k2 = 1), MΛ,κ(k2 = 1) as well as the

convex combination MΛ,κ(X1 = 1) are illustrated in Fig 1.

The previous results draw the following picture: The algebraic decoupling of molecules

with two di�erent types of ligands described by Martini et al. [8] corresponds to �nding

a conditionally stochastically independent system with the same overall titration curves.

In detail, this means that, for a given family of measures M on {0, 1}n1+n2 , we look

for a family of measures N such that all conditional measures N|k2 are product mea-

sures on {0, 1}n1 for every k2 ∈ K2, N|k1 are product measures for every k1 ∈ K1 and

S1(M) = S1(N), S2(M) = S2(N). Compared to the setup with only one type of ligand

we have an additional constraint since the function S was split into two parts. This con-

straint makes it impossible to �nd a family of product measures on {0, 1}n1+n2 for any

given M . Consequently, the constraint of being a product measure is relaxed. However,

the weakening of the constraints leads to the existence of several di�erent solutions. A

naturally arising question is which features the di�erent distributions of di�erent decou-

pled molecules share. We will compare the decoupled molecule of Examples 1, 2 with the

other decoupled molecule sharing the same overall titration curves.

Example 3 Let M = (g1, g2, gA, w1,2, w1,A, w2,A) = (2, 3
2
, 2, 1, 3

2
, 8

3
) be the molecule of

Example 1 and let N = (2, 3
2
, 2, 1, 2, 2) be the second decoupled molecule with the same

bp (the maximal number of decoupled systems is 2, except for permutations, compare
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Figure 1: First row: Activity dependent ligand binding to each site of the tuple M of Example

2. Logarithmic scales of the activities of the ligands are used. The probability of a site being

occupied is encoded by colors, according to the color bar on the right side of the �gure. Second

row: Conditional binding curves of site 1 and 2 for the conditions �site A is unoccupied� (black

line) and �site A is occupied� (red line). The superposition represents the titration curve of site

1, however was calculated using the conditional HH curves and the titration curve of site A:

M(X1 = 1) = M(X1 = 1|k2 = 0)M(k2 = 0) +M(X1 = 1|k2 = 1)M(k2 = 1).
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[8]). Then

NΛ,κ(Xi = 1|k2 = 0) = MΛ,κ(Xi = 1|k2 = 0), i = 1, 2

NΛ,κ(X1 = 1|k2 = 1) = MΛ,κ(X2 = 1|k2 = 1)

and

NΛ,κ(X2 = 1|k2 = 1) = MΛ,κ(X1 = 1|k2 = 1)

These equations mean that the decoupled molecules M and N share the same conditional

HH titration curves. However they are permuted in the case of k2 = 1.

We can formulate this observation as proposition.

Proposition 6 Let M and N be two di�erent decoupled molecules with n1 binding sites

for ligand L1 and n2 binding sites for ligand L2 sharing the same binding polynomial.

Moreover, let the order of the binding sites be equal, that is gMi = gNi ∀i ∈ {1, .., ., An2}.
Then the following statements hold:

a) NΛ,κ(Xi = 1|k2 = {0}n2) = MΛ,κ(Xi = 1|k2 = {0}n2) ∀Λ, κ ∈ [0,∞)

b) A permutation σ of {1, ..., n1} exists such that

NN
Λ,κ(Xi = 1|k2 = {1}n2) = MΛ,κ(Xσ(i) = 1|k2 = {1}n2)

Proof.

a) According to Eq. (38) g′i,c = gi, and g
M
i = gNi since the order of the sites is assumed

to be �xed.

b) Again, Eq. (38) proves the statement, since the products

gj

n2∏
i=1

wj,Aσ(i)

have to solve a subsystem of equations given by the coe�cients ai,n2 of the bp and

consequently are permutations of each other, since they correspond to the roots of

a polynomial (compare [9], Proposition 3).

�

Remark 4 Proposition 6 b) states that every family of conditional stochastic indepen-

dent measures, that is every decoupled molecule, corresponds to a permutation of the same

set of conditioned HH curves (conditioned on the sites for ligand L2 being fully occupied).

If every permutation was realizable this would give at least n1! di�erent molecules. As

the same is true for the sites of ligand L1 being fully occupied this adds the factor n2!.

-845-



Since a molecule is not fully described only by the conditional curves of these �extreme�

conditions, the number of decoupled molecules belonging to the same bp should be higher

than n1!n2!. This observation is contrary to a former conjecture by Martini et al. [9] in

which we supposed that the maximal number of molecules is equal to n1!n2!. We checked

this conjecture intensively and saw that an additional factor is required.

To complete our illustrations, we give a �nal example of a system with two binding sites

for each ligand. This example shows, how to deal with the weights of the superposition

in the case of more than one binding site for both ligands.

Example 4 Let the decoupled tupleM = (g1, g2, gA, gB, w1,2, w1,A, w1,B, w2,A, w2,B, wA,B)

= (2, 16, 4, 8, 1, 8, 4, 1
16
, 1

32
, 1) be given. Its binding polynomial is

Φ(M) = 64Λ2κ2 + 96Λ2κ+ 32Λ2 + 2049Λκ2 + 136Λκ+ 18Λ + 32κ2 + 12κ+ 1

We calculate the conditional HH curves of site 1, exemplarily.

M(X1 = 1|k2 = (0, 0)) =
32Λ2 + 2Λ

32Λ2 + 18Λ + 1
=

2Λ

2Λ + 1
(41)

M(X1 = 1|k2 = (0, 1)) =
32Λ2κ+ 64Λκ

32Λ2κ+ 68Λκ+
=

4Λ2 + 8Λ

4Λ2 + 8.5Λ + 1
=

8Λ

8Λ + 1
(42)

M(X1 = 1|k2 = (1, 0)) =
64Λ2κ+ 64Λκ

64Λ2κ+ 68Λκ+ 4κ
=

16Λ2 + 16Λ

16Λ2 + 17Λ + 1
=

16Λ

16Λ + 1
(43)

M(X1 = 1|k2 = (1, 1)) =
64Λ2κ2 + 2048Λκ2

64Λ2κ2 + 2049Λκ2 + 32κ2
=

64Λ

64Λ + 1
(44)

The corresponding weights for the superposition are given by:

M(k2 = (0, 0)) =
32Λ2 + 18Λ + 1

Φ(M)
(45)

M(k2 = (0, 1)) =
32Λ2κ+ 68Λκ+ 8κ

Φ(M)
(46)

M(k2 = (1, 0)) =
64Λ2κ+ 68Λκ+ 4κ

Φ(M)
(47)

M(k2 = (1, 1)) =
64Λ2κ2 + 2049Λκ2 + 32κ2

Φ(M)
(48)

Thus, we receive the following representation of M(X1 = 1) with Eqs. (41− 48):

M(X1 = 1) = (41) · (45) + (42) · (46) + (43) · (47) + (44) · (48) (49)

The binding curves of the individual sites as well as the HH curves and the corresponding

weights are illustrated in Fig. 2.

-846-



Figure 2: First column: Activity dependent ligand binding to each site of the tuple M of

Example 4 . Logarithmic scales of the activities of the ligands are used. The probability of a site

being occupied is encoded by colors, according to the color bar on the right side of each image.

Second column: Conditional binding curves of site 1 for the di�erent microstates of ligand L2

(k2 ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}). Third column: probabilities of the di�erent microstates of the

binding sites for the second ligand.
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Remark 5 In a decoupled molecule M with only one type of ligand, the following

calculation rule for the binding constants of a microstate k = (xk1, ..., x
k
n) is a direct result

of stochastic independence of the binding sites:

MΛ(k) = MΛ(xk1, ..., x
k
n) =

n∏
i=1

(
MΛ(Xi = 1)x

k
i ·MΛ(Xi = 0)1−xki

)
. (50)

The sum of all probabilities of microstates belonging to the same macrostate gives the

probability of the macrostate

MΛ(S(k) = i) =
∑

{k|S(k)=i}

MΛ(k) =
aiΛ

i

Φ(M)
(51)

which the decoupled molecule obviously shares with every molecule with the same binding

polynomial, since the coe�cient ai of the polynomial as well as the polynomial Φ(M) are

identical (the coe�cient ai is given by the sum of all constants of the microstates with

macrostate i). These equations can be transfered to the case of a decoupled molecule N

binding two ligands. For a microstate k = (k1, k2) = (xk1, ..., x
k
n1
, ..., xkAn2 ), Eqs. (50- 51)

translate to:

NΛ,κ(k) = NΛ,κ(x
k
1, ..., x

k
An2

) = NΛ,κ(k2)

n1∏
i=1

(
NΛ,κ(Xi = 1|k2)x

k
i ·NΛ,κ(Xi = 0|k2)1−xki

)
(52)

and

NΛ,κ(S1(k) = i, S2(k) = j) =
∑

{k|S(k)=(i,j)}

NΛ,κ(k) =
ai,jΛ

iκj

Φ(M)
(53)

Due to the symmetric role of the two ligands Eq. (52) can also be rewritten with k1 instead

of k2 (and i ∈ {A1, ..., An2}). The coe�cient ai,j is given by the sum of all constants of

microstates belonging to macrostate (i, j).

4 Summary

In this work, we pulled back the DSR from the algebraic description of ligand binding � in

which it was developed � to stochastics and statistical mechanics which are the basis of the

algebraic setup. In this regard, we translated the DSR for one type of ligand from algebraic

equations into stochastics and showed that for a molecule being decoupled means that the

binding to the individual sites is stochastically independent for every activity of the ligand.

Furthermore, we showed that the DSR for two types of ligands corresponds to conditional

stochastic independence of the binding sites for one type of ligand if a microstate of the
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second ligand is �xed. This view implies that the two-dimensional titration curves can

be regarded as superposition of Henderson-Hasselbalch curves in a decoupled molecule.

The weights are given by the marginal distribution of the microstates of the second ligand

binding sites. The stochastic point of view helps to understand what the DSR for two

types of ligands means and which restrictions lead to the loss of uniqueness, compared

to the DSR for one type of ligand. Moreover, the secondary interaction in decoupled

molecules illustrates that �in any molecule� the absence of direct interaction of a pair of

binding sites (for the same ligand or for di�erent ligands) �e.g. due to a great distance

between them� is not su�cient for stochastic independence of their occupation. This

observation also implies that the interaction of two sites for the same type of ligand can

be di�erent if other ligands are available in the environment. Regulatory networks of

certain processes in biological systems might also take advantage of this mechanisms, in

which a second ligand does not have to play an active role, but might only work as a

transmitter of interaction. Future work should investigate how decoupled molecules can

also facilitate the understanding of the binding behavior of ligands to molecules with

interacting binding sites.
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