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Universiẗatsstrasse 30, BGI, 95447 Bayreuth, Germany

(Dated: December 16, 2010)

∗Author to whom correspondence should be addressed. Electronic mail: thomas.ullmann@uni-bayreuth.de
†E-mail: matthias.ullmann@uni-bayreuth.de; Website:www.bisb.uni-bayreuth.de

mailto:thomas.ullmann@uni-bayreuth.de
mailto:matthias.ullmann@uni-bayreuth.de
www.bisb.uni-bayreuth.de


2

CONTENTS

A. The classical particle in the box with a single-well or a double-well harmonic potential 3

1. Some useful mathematical relations 4

2. Description of the system 4

3. Partition functions and probability distributions 6

a. Zustandssumme and configuration integral in classical statistical thermodynamics 6

b. The particle in the box with a single-well harmonic potential 9

c. The particle in the box with a double-well harmonic potential 10

4. Effective phase space and configuration space volume 13

a. The particle in the box with a single-well harmonic potential 13

b. The particle in the box with a double-well harmonic potential 16

5. Extension of the formalism to multiple non-interacting particles 18

6. Pressure 19

7. Correction terms for the free energy perturbation schemes 20

a. Definition of an external particle reservoir 22

b. Model transformations 23

B. Efficiency of FEP simulations - bias and statistical uncertainty 30

1. Staging 31

2. The Bennett acceptance ratio method 32

C. Relation between Boltzmann entropy and Süßmann entropy 33
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Appendix A: The classical particle in the box with a single-well or a double-well harmonic potential

quantity harmonic potential type

single-well double-well

configurational partition function
(configuration integral) Qsw = 1

N !

(

√

2π

βmω2
Erf

[

√

βmω2

2

L
2

])N

Qdw = 1

N !

(

√

8π

βmω2
Erf

[

√

βmω2

2

L
4

])N

in SI units of
[

mN
]

Zustandssumme
(phase integral, partition function)Z

sw = 1

N !

(

2π
βω

Erf

[

√

βmω2

2

L
2

])N

Zdw = 1

N !

(

4π
βω

Erf

[

√

βmω2

2

L
4

])N

in SI units of
[

(J s)N
]

effective configuration
space volume Ω̃sw,q = 1

N !









√

4π

βmω2

(

Erf

[
√

βmω2

2

L
2

])

2

Erf

[√
βmω2 L

2

]









N

Ω̃dw,q = 1

N !









√

16π

βmω2

(

Erf

[
√

βmω2

2

L
4

])

2

Erf

[√
βmω2 L

4

]









N

in SI units of
[

mN
]

effective phase space volume Ω̃sw,p,q = 1

N !









4π
βω

(

Erf

[
√

βmω2

2

L
2

])

2

Erf

[√
βmω2 L

2

]









N

Ω̃dw,p,q = 1

N !









8π
βω

(

Erf

[
√

βmω2

2

L
4

])

2

Erf

[√
βmω2 L

4

]









N

in SI units of
[

(J s)N
]

TABLE I. Compilation of formulas for the description of the particle in the box models presented in the

example section of the main text. The particles are identical, non-interacting (ideal gas) and indistinguish-

able.N is the number of particles,ω is the angular frequency,m is the particle mass,L is the box length,

β−1 = kBT andErf is the error function (see Eq. (A.8)).
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1. Some useful mathematical relations

The listed relations can be found in standard math tables.
∞
∫

−∞

exp
[

−ax2
]

dx =

√

π

a
(A.1)

L
2
∫

−L
2

exp
[

−ax2
]

dx =

√

π

a
Erf

[√
a
L

2

]

(A.2)

L
4
∫

−L
4

exp
[

−ax2
]

dx =

√

π

a
Erf

[√
a
L

4

]

(A.3)

lim
x→∞

Erf(x) = 1 (A.4)

lim
x→0

Erf(x) =
2x√
π

(A.5)

d ln [ax]

dx
=

1

x
(A.6)

d ln [aErf [bx]]

dx
=

2b exp [−b2x2]√
πErf [bx]

(A.7)

where

Erf (x) =
2

π

x
∫

0

exp
[

−t2
]

dt (A.8)

is the error function.

2. Description of the system

This model example demonstrates the application of our formalism to a dynamic system for-

mulated in non-dimensionless, continuous coordinates. The model system consists of a particle of

massm in a one-dimensional box of lengthL. The spatial coordinateq is defined on the interval

−L
2
≤ q ≤ L

2
. The momentump must not be confused with the occupation probabilityp. The

potential energy is given by a single-well or double-well harmonic potential denoted bysw or dw,

respectively. The Hamiltonian of the system is given by

Hsw=
p
2

2m
+

mω2
q
2

2
(A.9)

Hdw=
p
2

2m
+











mω2

2

(

q+ L
4

)2
if q ≤ 0

mω2

2

(

q− L
4

)2
if q > 0

(A.10)
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FIG. 1. Potential energy and probability distribution of the particle in a box models with a single-well or

a double-well harmonic potential. The particle mass is set tom = 2 × 10−26 [kg]. The box length of the

end state isL = 1.6× 10−9 [m] and the angular frequency isω = 1.6× 1012
[

s−1
]

. (a) single-well (black

curve) or double-well (red curve) harmonic potential as function of theconfigurationq (b) configuration

space probability distribution for the position of a single particle in a box with a single-well (black curve)

or double-well (red curve) harmonic potential(c) phase space probability distribution for the position of a

single particle in a box with a single-well harmonic potential(d) phase space probability distribution for the

position of a single particle in a box with a double-well harmonic potential The regions of phase space with

a probability density higher than an 31.35[(Js)−1] are projected into the phase space plane and contoured

bold black to schematically show the effectively populated regions of phasespace whose volume is given by

Ω̃. Please note that this cutoff value for the probability density is arbitrary andthat the effective phase space

volume, defined by Eq. (38), does actually not correspond to a region of phase space with sharp boundaries

since the probability density is non-zero throughout the whole phase space region on which the model is

defined.
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where the kinetic energy is given by the first terms on the right hand sides, whereas the potential

energy is given by the second terms on the right hand sides. Ina classical formulation as adopted

herep andq are independent. The strength of the harmonic potential is determined by the angular

frequencyω of the oscillator. The potential energy for the single-welland double-well models

are plotted in Fig.1(a) as function of the spatial coordinateq. In the following sections, we will

derive the necessary formalism to treat the particle in the box models. The derivations are given

in full detail to demonstrate the applicability of our FEP formalism to models in continuous, non-

dimensionless coordinates. The most important equations used for the particle in the box example

of the main text are compiled in TableI for quick reference.

In case of the single-well harmonic potential and an infinitely large box, the model is equivalent

to the well known classical formulation of the one-dimensional harmonic oscillator. The models

can readily be extended to the case of multiple non-interacting (ideal gas) particles. In this case the

model with a single-well potential and an infinitely large box can also be interpreted as a collection

of independent, classical harmonic oscillators.

3. Partition functions and probability distributions

We begin this section, with a short introduction of partition functions in general and their use-

fulness in (classical) statistical thermodynamics. In themain part of this section, we derive ana-

lytical expressions for the classical partition functionsand probability density distributions of the

harmonic oscillator models introduced in the previous section.

a. Zustandssumme and configuration integral in classical statistical thermodynamics

The ZustandssummeZ is given by the integral of the Boltzmann factorexp [−βH] over the

whole phase space known as phase integral

Z =

∫

exp [−βH (p,q)] dp dq (A.11)

where the microstate of the system is given by a particular set of values forp andq. For classical

systems,H is separable in a kinetic energy termEkin depending only onp and a potential energy

termEpot depending only onq, and thus the phase integral can be expressed as product of two
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independent integrals termed momentum integral and configuration integral

Z =

∫

exp
[

−βEkin (p)
]

dp

∫

exp
[

−βEpot (q)
]

dq (A.12)

Typically, the range of momentum values is not restricted. Thus, the momentum integral is typi-

cally carried out over the interval−∞ ≤ p ≤ ∞ yielding a constant factor
√

2πmβ−1
DN

where

N is the number of particles in the system andD is the dimensionality of the system, that would

beD = 1 for our one-dimensional box. Since we formulated our model in continuous coordinates,

the ratio of the Boltzmann factor and the Zustandssumme denotes a probability density

ρp,q =
exp [−βH]

Z
(A.13)

which upon integration over a certain region of phase space yields the equilibrium probability, for

the occupation of this phase space region by the system

p =

pend
qend
∫

pstart
qstart

ρp,q dp dq (A.14)

Often, we are not interested in the full phase space probability distribution of the system but only

in the probability distribution of the system configuration, which can be obtained by integrating

the probability density at each configuration over the entire range of momentum values

ρq =
1

Z

p=∞
∫

p=−∞

exp [−βH] dp

=

p=∞
∫

p=−∞
exp

[

−βEkin (p)
]

dp exp [−βEpot (q)]

p=∞
∫

p=−∞
exp [−βEkin (p)] dp

∫

exp [−βEpot (q)] dq

(A.15)

where we see that the momentum integral cancels because it occurs in numerator and denominator.

Thus, the probability distribution of the configuration is given by

ρq =
exp [−βEpot]

Q
(A.16)

where the configuration integral is given by the integral

Q =

∫

exp
[

−βEpot
]

dq (A.17)
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taken over the whole configuration space. Due to its role in determining ρq, Q is also called

configurational partition function. As for the phase space probability density, a probability to find

the system in a given region of the configuration space can be obtained by integratingρq over this

region

p =

qend
∫

qstart

ρq dq (A.18)

Often, the configurational partition function is partitioned further in a product of partition func-

tions each accounting for different energy terms and/or degrees of freedom, where the config-

uration q can be expressed in terms of different coordinate systems. The separability of the

configuration integral, e.g., into translational, rotational and vibrational partition functions does

involve the approximation that these motions are uncorrelated [1, 2]. Derived coordinate sys-

tems, such as internal coordinates, are not necessarily mutually independent (or orthogonal) and

do not preserve the units of the initial, e.g., cartesian coordinates. Jacobians must be used for the

back-transformation into the desired coordinate system [3–7]. For some example applications of

Jacobians to molecular simulations in dihedral angle spacesee Refs. [8–10].

In the literature, often a factorN = 1
hDN is added to Eq. (A.11) to match the high temperature

limit of the corresponding quantum mechanical solution. The factor is omitted here, because

it is of no relevance to our purely classical treatment and cancels from all derived expressions

like free energy differences [1, 2]. Likewise, it would also be necessary to add the factorN to the

Boltzmann factor in the numerator of Eq.A.13 to yield the normalization of the probability density

to the prescribed configuration space volume (characterized by finite potential energy) as expected

from a classical system. For further information on the meaning ofN and possible interpretations,

the reader is referred to standard statistical mechanics textbooks [1, 11]. Also Refs. [2, 12, 13]

might be helpful.

If the system can adopt several indistinguishable configurations, an additional factor needs to

be added to the partition functions Eqs. (A.11) and (A.17) and likewise to the Boltzmann factor

of such degenerate microstates in Eqs. (A.13), (A.15) and (A.16) to correct for this reduction of

the entropy. If for example, the system consists ofN , indistinguishable particles, a prefactor of
1
N !

would have to be added to both partition functions and the Boltzmann factors of all microstates

and configurations in Eqs. (A.13), (A.15) and (A.16).

Besides determining the microstate probability distributions, the partition functions or their

derivatives with respect to some parameter permit the calculation of all thermodynamic state func-
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tions of the system, for instance free energy, internal energy, enthalpy, entropy, chemical potential

and pressure. This is exemplified at the calculation of the pressure in Sec.A 6.

b. The particle in the box with a single-well harmonic potential

The Hamiltonian is given by Eq.A.9. Consequently, the partition function is given by

Zsw =

∞
∫

−∞

exp

[

−βp2

2m

]

dp

L
2
∫

−L
2

exp

[

−βmω2
q
2

2

]

dq (A.19)

The configuration integral can be solved using Eq. (A.2) giving the configurational partition func-

tion

Qsw =

√

2π

βmω2
Erf

[
√

βmω2

2

L

2

]

in SI units of [m] (A.20)

The momentum integral can be solved using Eq. (A.1) giving
√

2πmβ−1 in
[

kgm
s

]

. The product

of momentum and configuration integral gives the total partition function or Zustandssumme

Zsw =
2π

βω
Erf

[
√

βmω2

2

L

2

]

in SI units of

[

kgm2

s

]

= [J s] (A.21)

whereQ possesses units of length[m] andZ possesses units of action[J s]. In the limit of an

infinitely large box length, the well known expression for the partition function of the classical

one-dimensional harmonic oscillator is recovered using Eq. (A.4)

lim
L→∞

Zsw =
2π

βω
in SI units of [J s] (A.22)

With the derived partition functions Eqs. (A.20) and (A.21), and Eqs. (A.13) and (A.16) the prob-

ability density distributions in phase space and configuration space can be written as

ρsw,q =
exp

[

−βmω2
q
2

2

]

√

2π
βmω2Erf

[

√

βmω2

2
L
2

] in SI units of
[

m−1
]

(A.23)

ρsw,p,q =
exp

[

−βp2

2m
− βmω2

q
2

2

]

2π
βω
Erf

[

√

βmω2

2
L
2

] in SI units of
[

(J s)−1] (A.24)

In the last part of this section we will check our results for consistency with physical expecta-

tions. The simplest check concerns the proper normalization of the derived probability distribu-

tions. The integral of the probability distributions Eq. (A.23) and (A.24) over the whole config-

uration or phase space should give a probability of unity to find the particle inside the integrated
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region. This can be seen to be the case, because the integralsof the variable exponential terms

in the numerator of Eqs. (A.23) and (A.24) yield again the partition functions, which also occur

as constants in the denominator of these equations. Finally, we will consider the limiting case of

a vanishing harmonic potential,i.e , ω → 0. In this case, one would expect a uniform proba-

bility distribution throughout the entire box. The corresponding limit of the configuration space

probability density is found using Eq. (A.5)

lim
ω→0

ρsw,q =

√

βmω2

2π
limω→0 exp

[

−βmω2
q
2

2

]

limω→0 Erf

[

√

βmω2

2
L
2

]

=

√

βmω2

2π
1

2√
π

√

βmω2

2
L
2

=

√

βmω2

2π
1

√

βmω2

2π
L

=
1

L
in SI units of

[

m−1
]

(A.25)

and confirms our expectation.

The configuration and phase space probability density distributions are plotted for concrete

example parameters in Fig.1(b) and (c)

c. The particle in the box with a double-well harmonic potential

The Hamiltonian is given by Eq.A.10. Consequently, the partition function is given by

Zdw =

∞
∫

−∞

exp

[

−βp2

2m

]

dp







0
∫

−L
2

exp

[

−βmω2
(

q+ L
4

)2

2

]

dq+

L
2
∫

0

exp

[

−βmω2
(

q− L
4

)2

2

]

dq







(A.26)

where we need to perform a piecewise integration to obtain the configuration integral, because of

the piecewise definition of the potential energy. The configuration integral can be solved using

Eq. (A.3) with a variable substitution settingq′ = q± L
4
. After re-substitution we obtain

Qdw =

√

8π

βmω2
Erf

[
√

βmω2

2

L

4

]

in SI units of [m] (A.27)
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The momentum integral can be solved using Eq. (A.1) giving
√

2πmβ−1 in
[

kgm
s

]

. The product

of momentum and configuration integral gives the total partition function or Zustandssumme

Zdw =
4π

βω
Erf

[
√

βmω2

2

L

4

]

in SI units of

[

kgm2

s

]

= [J s] (A.28)

whereQ possesses units of length[m] andZ possesses units of action[J s]. In the limit of an in-

finitely large box length, twice the well known expression for the partition function of the classical

one-dimensional harmonic oscillator is recovered using Eq. (A.4)

lim
L→∞

Zdw =
4π

βω
in SI units of [J s] (A.29)

In the limit of L → ∞, the potential wells are separated infinitely far from each other, thus each

potential well should be equivalent to a system with a single-well harmonic potential of equal

strength. Consequently, the partition function of the system in this limit should be twice that of

the equivalent system with the single well harmonic potential, which is confirmed by comparison

of Eq. (A.22)) with Eq. (A.29. With the derived partition functions Eqs. ((A.27) and (A.28), and

Eqs. (A.13) and ((A.16) the probability density distributions in phase space and configuration

space can be written as

ρdw,q =
exp

[

−βmω2
q
2

2

]

√

8π
βmω2Erf

[

√

βmω2

2
L
4

] in SI units of
[

m−1
]

(A.30)

ρdw,p,q =
exp

[

−βp2

2m
− βmω2

q
2

2

]

4π
βω
Erf

[

√

βmω2

2
L
4

] in SI units of
[

(J s)−1] (A.31)

In the last part of this section we will check our results for consistency with physical expecta-

tions. The simplest check concerns the proper normalization of the derived probability distribu-

tions. The integral of the probability distributions Eqs. (A.30) and (A.31) over the whole config-

uration or phase space should give a probability of unity to find the particle inside the integrated

region. This can be seen to be the case, because the integralsof the variable exponential terms

in the numerator of Eqs. (A.30) and (A.31) yield again the partition functions, which also occur

as constants in the denominator of these equations. Next, wewill consider the limiting case of a

vanishing harmonic potential,i.e , ω → 0. In this case, one would expect a uniform probability

distribution throughout the entire box. The correspondinglimit of the configuration space prob-

ability density is found using Eq. (A.5) and exploiting the symmetry of the harmonic potential
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FIG. 2. Effective configuration space volume and effective phase space volume of the particle in a box

models with a single-well or a double-well harmonic potential. The effective phase space volume of a

given model differs from its the effective configuration space volume only by a constant factor
√

4πm
β

. The

particle mass is set tom = 2×10−26 [kg]. The angular frequency for (a) and (b) is set toω = 10−26
[

s−1
]

.

The box length for (c) and (d) is set toL = 1.6×10−9 [m]. (a) configuration space volume of the single-well

(black curve) or double-well model (red curve) as function of the boxlengthL (b) phase space volume of the

single-well (black curve) or double-well model (red curve) as function of the box lengthL (c) configuration

space volume of the single-well (black curve) or double-well model (redcurve) as function of the angular

frequencyω (c) phase space volume of the single-well (black curve) or double-well model(red curve) as

function of the angular frequencyω

aboutq = 0

lim
ω→0

ρsw,q =

√

βmω2

8π
limω→0 exp

[

−βmω2(|q|−L
4 )

2

2

]

limω→0 Erf

[

√

βmω2

2
L
4

]

=

√

βmω2

8π
1

2√
π

√

βmω2

2
L
4

=

√

βmω2

8π
1

√

βmω2

8π
L

=
1

L
in SI units of

[

m−1
]

(A.32)

and confirms our expectation.

The configuration and phase space probability density distributions are plotted for concrete

example parameters in Fig.1(b) and (d)
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4. Effective phase space and configuration space volume

The effective configuration (phase) space volume was introduced in the main text as measure

for the volume of the effectively populated regions of configuration (phase) space. In the context

of our model formulated in a continuous coordinates, the effective configuration and phase space

volumes are obtained from

Ω̃q =
1

∫

(ρq)2 dq
(A.33)

Ω̃p,q =
1

∫

(ρp,q)2 dp dq
(A.34)

In the following two sections, we will derive and examine concrete expressions for the phase and

configuration space volume of our particle in the box models with a single-well and double-well

harmonic potential. The effective configuration space and phase space volumes for these models

are plotted in Fig.2 as function of the box lengthL and as function of the angular frequencyω.

a. The particle in the box with a single-well harmonic potential

The effective configuration space volume is found from Eqs. (A.33) and (A.23) with the aid of

Eq. (A.2)

1

Ω̃sw,q
=

L
2
∫

−L
2

(ρsw,q)2 dq

=
βmω2

2π
(

Erf

[

√

βmω2

2
L
2

])2

L
2
∫

−L
2

exp
[

−βmω2
q
2
]

dq

=
βmω2

2π
(

Erf

[

√

βmω2

2
L
2

])2

√

π

βmω2
Erf

[

√

βmω2
L

2

]

=

√

βmω2

4π

Erf
[

√

βmω2L
2

]

(

Erf

[

√

βmω2

2
L
2

])2

(A.35)

from which we obtain

Ω̃sw,q =

√

4π

βmω2

(

Erf

[

√

βmω2

2
L
2

])2

Erf
[

√

βmω2L
2

] in SI units of [m] (A.36)
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The limit of the effective configuration space volume asL approaches infinity is found by making

use of Eq.A.4

lim
L→∞

Ω̃sw,q =

√

4π

βmω2
(A.37)

In the limit of a vanishing harmonic potential, the effective configuration space volume approaches

the box lengthL

lim
ω→0

Ω̃sw,q =

√

4π

βmω2

(

2√
π

√

βmω2

2
L
2

)2

2√
π

√

βmω2L
2

=

√

4π

βmω2

βmω2

2π
L2

√

βmω2

π
L

= L

(A.38)

where we made use of Eq.A.5. This confirms what one would expect on physical grounds, because

in absence of the harmonic potential the particle should be free to move anywhere inside the box.

The effective phase space volume is found from Eqs. (A.34) and (A.24) with the aid of

Eqs. (A.1) and (A.2)

1

Ω̃sw,p,q
=

L
2
∫

−L
2

(ρsw,p,q)2 dp dq

=

∞
∫

−∞
exp

[

−βp2

m

]

dp

L
2
∫

−L
2

exp [−βmω2
q
2] dq

4π2

β2ω2

(

Erf

[

√

βmω2

2
L
2

])2

=

π
βω

(

Erf
[

√

βmω2L
2

])

4π2

β2ω2

(

Erf

[

√

βmω2

2
L
2

])2

=
βω

4π

Erf
[

√

βmω2L
2

]

(

Erf

[

√

βmω2

2
L
2

])2

(A.39)

from which we obtain

Ω̃sw,p,q =
4π

βω

(

Erf

[

√

βmω2

2
L
2

])2

Erf
[

√

βmω2L
2

] in SI units of [J s] (A.40)
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The limit of the effective phase space volume asL approaches infinity is found by making use of

Eq.A.4

lim
L→∞

Ω̃sw,p,q =
4π

βω
(A.41)

In the limit of a vanishing harmonic potential, the effective phase space volume approaches the

box lengthL times the constant factor
√

4πm
β

originating from the additional integration over the

momentum space in Eqs. (A.21) and (A.35) in comparison to Eqs. (A.20) and (A.35) which are

the analogous equations formulated in configuration space

lim
ω→0

Ω̃sw,p,q =
4π

βω

(

2√
π

√

βmω2

2
L
2

)2

2√
π

√

βmω2L
2

=
4π

βω

βmω2

2π
L2

√

βmω2

π
L

=

√

4πm

β
L

(A.42)

where we made use of Eq.A.5.

A last interesting comparison oflimL→∞ Ω̃q can be made to the amplitudeA of an equivalent

harmonic oscillator moving under deterministic Newtonianmechanics without the stochastic fluc-

tuations induced by the heat bath. The total energy of the oscillator is set equal to the mean total

energy〈H〉 = β−1 of the stochastic oscillator. The amplitude is found by setting this energy equal

to the maximum potential energy (see Eq. (A.9)) of the oscillator at an extensionq = A

Epot
max =

1

2
mω2

q
2
max

β−1 =
1

2
mω2A2

(A.43)

from which we obtain

A =

√

2

βmω2
(A.44)

Comparison to Eq. (A.41) shows
limL→∞ Ω̃q

A
=

√
2π (A.45)

that is, the effective configuration space volume is a factor
√
2π larger than the corresponding

deterministic amplitude.
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b. The particle in the box with a double-well harmonic potential

The effective configuration space volume is found from Eqs. (A.33) and (A.30) exploiting the

symmetry of the harmonic potential aboutq = 0 using Eq. (A.1) for the momentum dependent

integral and Eq. (A.3) for the configuration dependent integral using the temporary variable sub-

stitutionq′ = q+ L
4

for the integration

1

Ω̃dw,q
=

L
2
∫

−L
2

(

ρdw,q
)2

dq

=
βmω2

2π
(

Erf

[

√

βmω2

2
L
2

])2 2

0
∫

−L
2

exp

[

−βmω2

(

q+
L

4

)2
]

dq

=
βmω2

π
(

Erf

[

√

βmω2

2
L
4

])2

√

π

16βmω2
Erf

[

√

βmω2
L

4

]

=

√

βmω2

16π

Erf
[

√

βmω2L
4

]

(

Erf

[

√

βmω2

2
L
4

])2

(A.46)

from which we obtain

Ω̃dw,q =

√

16π

βmω2

(

Erf

[

√

βmω2

2
L
4

])2

Erf
[

√

βmω2L
4

] in SI units of [m] (A.47)

The limit of the effective configuration space volume asL approaches infinity is found by making

use of Eq.A.4

Ω̃dw,q lim
L→∞

=

√

16π

βmω2
(A.48)

Eq. (A.48) is twice the corresponding limit of the configuration spacevolume for the single-well

model Eq. (A.37), The factor2 can be rationalized by recognizing that the double-well model is

in this limit equivalent to two single-well models separated by an infinitely large distance. In the

limit of a vanishing harmonic potential, the effective configuration space volume approaches the
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box lengthL

Ω̃dw,q lim
ω→0

=

√

16π

βmω2

(

2√
π

√

βmω2

2
L
4

)2

2√
π

√

βmω2L
4

=

√

16π

βmω2

βmω2

π
L2

8
√

βmω2

π
L
2

= L

(A.49)

where we made use of Eq.A.5. This confirms what one would expect on physical grounds, because

in absence of the harmonic potential the particle should be free to move anywhere inside the box.

The effective phase space volume is found from Eqs. (A.34) and (A.31) with the aid of Eq. (A.1)

for the integration of the momentum dependent integral. During the integration of the configura-

tion dependent integral, the symmetry of the harmonic potential aboutq = 0 is exploited and a

temporary variable substitutionq′ = q+ L
4

is used to be able to employ Eq. (A.3)

1

Ω̃dw,p,q
=

L
2
∫

−L
2

(

ρdw,p,q
)2

dp dq

=

∞
∫

−∞
exp

[

−βp2

m

]

dp 2
0
∫

−L
2

exp
[

−βmω2
(

q+ L
4

)2
]

dq

16π2

β2ω2

(

Erf

[

√

βmω2

2
L
4

])2

=

2π
βω

(

Erf
[

√

βmω2L
4

])

16π2

β2ω2

(

Erf

[

√

βmω2

2
L
4

])2

=
βω

8π

Erf
[

√

βmω2L
4

]

(

Erf

[

√

βmω2

2
L
4

])2

(A.50)

from which we obtain

Ω̃dw,p,q =
8π

βω

(

Erf

[

√

βmω2

2
L
4

])2

Erf
[

√

βmω2L
4

] in SI units of [J s] (A.51)

The limit of the effective phase space volume asL approaches infinity is found by making use of

Eq.A.4

Ω̃dw,p,q lim
L→∞

=
8π

βω
(A.52)
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which is twice the corresponding phase space volume of the corresponding single-well model

Eq. (A.52), as can be understood by the same arguments employed in the interpretation of the

configuration space volume Eq. (A.48) in this limit. In the limit of a vanishing harmonic potential,

the effective phase space volume approaches the box lengthL times the constant factor
√

4πm
β

originating from the additional integration over the momentum space in Eqs. (A.28) and (A.46) in

comparison to Eqs. (A.27) and (A.46) which are the analogous equations formulated in configura-

tion space

Ω̃dw,p,q lim
ω→0

=
8π

βω

(

2√
π

√

βmω2

2
L
4

)2

2√
π

√

βmω2L
4

=
8π

βω

βmω2

2π
L2

4
√

βmω2

π
L
2

=

√

4πm

β
L

(A.53)

where we made use of Eq.A.5.

5. Extension of the formalism to multiple non-interacting particles

The particle in the box models presented in the previous sections are readily extended to the

case of multiple, non-interacting (ideal gas) particles residing in the box. Since the particles do not

interact, the integration of the partition function can be done for each particle separately and the

total partition functions are given by the product of the individual one-particle partition functions.

Z =
N
∏

i=1

Zi= ZN
one−particle (A.54)

Q =
N
∏

i=1

Qi= QN
one−particle (A.55)

The same applies to the total configuration space volumeΨ, the effective configuration space

volumeΩ̃q and the effective phase space volumeΩ̃p,q

Ψ =
N
∏

i=1

Ψi = ΨN
one−particle (A.56)

Ω̃p =
N
∏

i=1

Ω̃p

i =
(

Ω̃p

one−particle

)N

(A.57)

Ω̃p,q =
N
∏

i=1

Ω̃p,q
i =

(

Ω̃p,q
one−particle

)N

(A.58)
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If the particles are indistinguishable, the number of actual microstates of the system is reduced

by a factor 1
N !

, which is given by the number of possible permutations of theparticle identities

denoted in Eqs. (A.54), (A.55), (A.56), (A.57) and (A.58) by the index variablei. Consequently,

the factor 1
N !

has to be added to Eqs. (A.54), (A.55), (A.56), (A.57) and (A.58) if the particles are

indistinguishable.

6. Pressure

In this section we will derive expressions for the pressure of our particle in the box models

from the partition functions obtained in Sec.A 3 as example for the derivation of thermodynamic

state functions from the partition function. The resultingexpressions for the pressure in certain

limiting cases will be verified by comparison to well known results of elementary statistical ther-

modynamics. The text-book expression for the external pressureP ext exerted against the walls of

the box is given by the negative derivative of the free energywith respect to the box length

P ext =
dF

dL

βP ext =
−d lnZ

dL

(A.59)

where we note that the momentum integral and other possibly added constant factors independent

on L, like the factor 1
N !

introduced in the previous section to account for the indistinguishability

of theN particles can be separated off the configurational integraland vanish upon differentia-

tion. For simplicity we compile all factors independent onL in the constantc, and express the

configurational partition function in terms of the one-particle partition function, assuming again

N identical, non-interacting particles

βP ext =
−d lnQN

one−particle

dL
+

d ln c

dL
βP ext

N
=

−d lnQone−particle

dL

(A.60)

The external pressure of the single-well and double well harmonic potentials can now be derived

by substitutingQone−particle with the corresponding configurational partition functiongiven by

Eq. (A.20) or Eq. (A.27), respectively. The differentiation is carried out by making use of Eq. (A.7)
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from which we obtain

βP ext,sw

N
=

√

βmω2

2π
exp

[

−βmω2

8
L2
]

Erf

[

√

βmω2

2
L
2

] (A.61)

βP ext,dw

N
=

√

βmω2

2π
exp

[

−βmω2

32
L2
]

2Erf

[

√

βmω2

2
L
4

] (A.62)

To confirm result we consider the limit of Eqs. (A.61) and (A.62) asω approaches zero, that is

in the absence of the harmonic potentials. Making use of Eq. (A.5), we obtain for the single-well

model

lim
L→0

βP ext,sw

N
=

√

βmω2

2π
1

2√
π

√

βmω2

2
L
2

=
1

L

(A.63)

Making again use of Eq. (A.5), we obtain for the double-well model

lim
L→0

βP ext,dw

N
=

√

βmω2

2π
1

2 2√
π

√

βmω2

2
L
4

=
1

L

(A.64)

The limiting cases Eqs. (A.63) and (A.64) match the ideal gas law, confirming our result. Another

interesting limit of the external pressure is obtained considering the limitL → ∞, which is equal

to the limit forω → ∞
lim
L→∞

βP ext,sw

N
= lim

ω→∞

βP ext,sw

N
= 0 (A.65)

In both cases, the particle does essentially never reach thewalls of the box, explaining why the

external pressure approaches zero in these limits.

7. Correction terms for the free energy perturbation schemes

In this section, we derive explicit expressions for the FEP correction terms introduced in Sec.2

of the main article as applied to the particle in the box models. We will demonstrate the sig-

nificance of these correction terms at our example systems with special emphasize on the units

acquired by the correction terms and the single move FEP integrals themselves. Furthermore, we
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will extend the example transformations of the particle in the box models presented in Sec.3.4of

the main paper with two more model transformations in which the particle number in the system

changes during the transformation.

The correction terms for the fast and slow single move FEP schemes derived in Sec.2.3 are

given by (from Eqs. (46) and (45))

∆∆F rand
0→1 = −β−1 ln

Ψ1

Ψ0

(A.66)

∆∆F
equi
0→1 = −β−1 ln

Ω̃1

Ψ0

(A.67)

From Eqs. (23) and (31) we know that

∆F̃ rand
0→1 = ∆F0→1 −∆∆F rand

0→1 (A.68)

∆F̃
equi
0→1 = ∆F0→1 −∆∆F

equi
0→1 (A.69)

Substituting

∆F0→1 = −β−1 ln
Q1

Q0

, (A.70)

∆∆F rand
0→1 with Eq. (A.66) and∆∆F

equi
0→1 with Eq. (A.67) we obtain

∆F̃ rand
0→1 = −β−1 ln Q1Ψ0

Q0Ψ1
(A.71)

∆F̃
equi
0→1 = −β−1 ln Q1Ψ0

Q0Ω̃1

(A.72)

From Secs.A 5 andA 5 we know that the configurational partition functionQ as well as the to-

tal configuration space volumeΨ and the effective configuration space volumeΩ̃ have units of
[

mDN
]

, whereD is the dimensionality of the system (D = 1 in our case) andN is the number

of particles in the system. From the expressions for the freeenergy difference Eq. (A.70), for

the free energy estimates from the single move FEP schemes Eqs. (A.71) and (A.72) and their

corresponding correction terms Eqs. (A.66) and (A.67), it can be seen that the dimensionality and

the total number of particles is required to be constant during the transformation for the units to

cancel. Now one might ask how the formalism can be applied then to transformations involving a

change in the number of particles residing in the system. In principle there can be two reasons for

a change in the particle number. The first possibility is a redistribution of mass among the parti-

cles (for example by aggregation or disaggregation of particles). In this case the number of actual

particles (for example atoms) would in reality still be the same, but their spatial position might be

highly correlated if the interaction of the particles is very strong. Nevertheless, the particles will
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still retain some freedom of relative movement, because theentropic cost of fixing their relative

position would be infinitely high. If the aggregates have a very well-defined, almost rigid structure,

the entropic contribution of their relative movement to thefree energy can be made implicit assum-

ing a constant energy term describing the formation of the aggregate, and the particle aggregate

can then be treated as one particle during the simulation. The second possibility is the exchange

of particles with an external reservoir. In this case the formulation of the problem must include

the particles of the reservoir. In the calculation of binding free energies, the unbound particles in

the reservoir are often treated implicitly by inclusion of achemical potential term accounting for

the free energy cost of removing them from the reservoir (seefor example Ref. [14]). An explicit

inclusion of the reservoir particles in the present formalism transforms Eqs. (A.66) and (A.67) into

∆∆F rand
0→1 = −β−1 ln

Ψmain
1

Ψres
1

Ψmain
0

Ψres
0

(A.73)

∆∆F
equi
0→1 = −β−1 ln

Ω̃q,main

1
Ω̃q,res

1

Ψmain
0

Ψres
0

(A.74)

where the superscriptsmain andres indicate the main model and the particle reservoir, respec-

tively. Similarly, the expression for the transformation free energy becomes

∆F0→1 = −β−1 ln
Qmain

1 Qres
1

Qmain
0 Qres

0

(A.75)

a. Definition of an external particle reservoir

As mentioned above, the treatment of a transformation involving the addition of particles from

an external reservoir to our main system requires the inclusion of the particles within the reservoir

into the description of the initial state. In order to include the reservoir in the formalism we need

a knowledge about the nature of the reservoir and its energetics. For our example, we will use

the simplest possible definition of a particle reservoir depicted in Fig3. The reservoir consists

of an (infinitely) large numberX of one-dimensional boxes of lengthL0 (the same length as our

particle in the box model in the initial state0). Each individual box contains exactly one particle

identical to the particles in the main system. The potentialenergy within the reservoir boxes is

zero. The reservoir has the same temperature as the main system. During the transformation,

∆N particles will be removed from the reservoir and inserted into the main system. The particles

are not exchangeable between the individual boxes and are thus treated as distinguishable. With

this model of the particle reservoir and the number of removed particles, we can write the total
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L0 L0 L0 L0 L0

...1 2 3 4 5

FIG. 3. An infinite particle reservoir formed by one-dimensional boxes oflengthL0 containing one particle

each. The particles can not be exchanged among the boxes and are consequently treated as distinguishable.

configuration space volume of the particle reservoir in the initial state0 and the final state1 as

Ψres
0 =

X
∏

i=1

L0 (A.76)

Ψres
1 =

X−∆N
∏

i=1

L0 (A.77)

Ψres
1

Ψres
0

= L−∆N
0 (A.78)

One can see, that, with this simple definition of the particlereservoir, we do not need knowledge

about the total number of particles within the reservoir butonly about the change in the reservoir’s

particle number accompanying the transformation to be ableto specify Ψres
1

Ψres
0

in Eqs. (A.73) and

(A.74). Note that, since the potential energy in the reservoir boxes is zero, the effective configura-

tion space volume is equal to the total configuration space volume and also to the configurational

partition function and thus
Ω̃q,res

1

Ψres
0

= L−∆N
0 (A.79)

For the same reason, also the configurational partition function is equal to the total configura-

tion space volume. Like the total configuration space volume, the total configurational partition

function is given by the product of partition functions for the individual reservoir boxes and thus

Qres
1

Qres
0

= L−∆N
0 (A.80)

b. Model transformations

In this section, we will state explicit expressions for the correction terms in case of several

example transformations of our particle in the box models including the example transformation

presented in the main text and examine their magnitude at concrete numeric examples. The trans-

formations can involve a change in box length, angular frequency, potential type (single-well or

double-well) and number of (ideal gas) particles:



24

• 1: scaling of the angular frequency by a factora and scaling of the box length by a factorb

• 2: scaling of the angular frequency by a factora and adding of∆N particles

• 3: adding of∆N particles and scaling of the box length by a factorb

The model transformations2 and3 can also be interpreted as a simplified model of binding, where

the number of particles in the main system would represent the number of bound particles, the

magnitude of the angular frequency would determine the strength of the interaction of ligand and

receptor, and where a change in the box length during the transformation would correspond to a

change in the total available configuration space volume upon binding. For a real binding reaction,

the available configuration space volume will mostly decrease upon binding because the ligand

and receptor need to come into close proximity and need to adopt configurations (overall rotation,

internal conformation) compatible with the bound state.

In the following, concrete expressions are stated for the corresponding correction terms re-

quired for the application of the random single-move (fast)and for the single-move FEP scheme

according to the equilibrium distribution of the target endstate (slow). For the slow single-move

FEP scheme, the correction terms are given for a transition from a single-well particle in the box

model as end state0 and a single-well or double-well model as end state1, respectively. In the

fast single-move FEP scheme, the correction term does not depend on the effective configuration

space volume of the target end state, but on the total configuration space volume only. Thus, the

correction terms are identical for the single-well or double-well particle in the box models as target

end state for the fast single-move FEP scheme. Consequently,three variants are given for each of

the three transformation types:

• sw → sw: transition from a single-well to a single-well model in thefast single-move FEP

scheme

• sw → sw: transition from a single-well to a single-well model in theslow single-move FEP

scheme

• sw → dw: transition from a single-well to a double-well model in theslow single-move

FEP scheme

The particle mass is set tom = 2.0E-26[kg]. For all three transformation types, the box length

of the initial state0 is L0 = 1.6E-09[m], its angular frequency isω0 = 1.0E+12[s−1] and its
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particle number isN0 = 1. Furthermore, the initial state possesses always a single-well harmonic

potential. The length of the individual boxes of the particle reservoir isL0. See Sec.A 7 a for

a detailed description of the particle reservoir. In the following the transformation type will be

indicated by the superscripts attached to the symbols of thefree energy changes and correction

terms.

In the first transformation type, the frequency and the box length are scaled by a constant fac-

tor so thatω1 = aω0 andL1 = bL0 where{a, b} > 0 are constant factors. The free energy

differences for the transition from a single-well model to asingle-well model or a double-well

model are plotted in Fig.4(a) and (b). The correction terms corresponding to the threevariants are

plotted in Fig.5(a)-(c). Expressions for the transformation free energiesare formulated accord-

ing to Eq. (A.75) using the configurational partition functions of the particle in the box models

Eqs. (A.20) and Eqs. (A.27). The ratio of the reservoir configurational partition functions is sub-

stituted with Eq. (A.80).

∆F 1
sw→sw = −β−1 ln

Erf

[

√

βm(aω0)
2

2
bL0

2

]

aErf

[

√

βmω2
0

2
L0

2

] (A.81)

∆F 1
sw→dw = −β−1 ln

Erf

[

√

βm(aω0)
2

2
bL0

4

]

2aErf

[

√

βmω2
0

2
L0

2

] (A.82)

Expressions for the correction terms can be obtained by inserting the total and effective configu-

ration space volumes into Eqs. (A.73) and Eqs. (A.74). The effective configuration space volumes

are taken from Eqs. (A.57) and (A.36) or (A.47) for the single-well and double-well models, re-

spectively. With this, we obtain

∆∆F fast,1
xw→xw = −β−1 ln b (A.83)

∆∆F slow,1
sw→sw = −β−1 ln

√

4π
βm(aω0)

2

(

Erf

[

√

βm(aω0)
2

2
bL0

2

])2

L0Erf

[

√

βm (aω0)
2 bL0

2

] (A.84)

∆∆F
slow,1
sw→dw = −β−1 ln

√

16π
βm(aω0)

2

(

Erf

[

√

βm(aω0)
2

2
bL0

4

])2

L0Erf

[

√

βm (aω0)
2 bL0

4

] (A.85)
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In the second transformation type, the frequency is scaled by a constant factora > 0 so that

ω1 = aω0 and∆N particles are taken from an external reservoir described inSec.A 7 aand added

to the system. The correction terms corresponding to the three variants are plotted in Fig.5(d)-(f).

Expressions for the transformation free energies are formulated according to Eq. (A.75) using the

configurational partition functions of the particle in the box models Eqs. (A.20) and Eqs. (A.27)

and the rules to calculate theN particle partition functions for indistinguishable particles from

them (see Sec.A 5). The ratio of the reservoir configurational partition functions is substituted

with Eq. (A.80).

∆F 2
sw→sw = −β−1 ln

(

√

2π
βm(aω0)

2Erf

[

√

βm(aω0)
2

2
L0

2

])∆N+1

(∆N + 1)!
√

2π
βmω2

0

Erf

[

√

βmω2
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2
L0

2

]

L∆N
0

(A.86)

∆F 2
sw→dw = −β−1 ln

(

√

8π
βm(aω0)

2Erf
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βm(aω0)
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2
L0

4
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(∆N + 1)!
√
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βmω2
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Expressions for the correction terms can be obtained by inserting the total and effective configu-

ration space volumes into Eqs. (A.73) and Eqs. (A.74). The effective configuration space volumes

are taken from Eqs. (A.57) and (A.36) or (A.47) for the single-well and double-well models, re-

spectively. Eq. (A.78) or Eq. (A.79) is inserted for the relative configuration space volume of the

reservoir at the two end states. With this, we obtain

∆∆F fast,2
xw→xw = −β−1 ln

1

(∆N + 1)!
(A.88)

∆∆F slow,2
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where the factor(∆N + 1)! accounts for the indistinguishability of the particles within the main

system (see Sec.A 5).

In the third transformation type, the length is scaled by a constant factorb > 0 so thatL1 =

bL0 and∆N particles are taken from an external reservoir described inSec.A 7 a and added to
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the system. The correction terms corresponding to the threevariants are plotted in Fig.5(g)-(i).

Expressions for the transformation free energies are formulated according to Eq. (A.75) using the

configurational partition functions of the particle in the box models Eqs. (A.20) and Eqs. (A.27)

and the rules to calculate theN particle partition functions for indistinguishable particles from

them (see Sec.A 5). The ratio of the reservoir configurational partition functions is substituted

with Eq. (A.80).
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Expressions for the correction terms can be obtained by inserting the total and effective configu-

ration space volumes into Eqs. (A.73) and Eqs. (A.74). The effective configuration space volumes

are taken from Eqs. (A.57) and (A.36) or (A.47) for the single-well and double-well models, re-

spectively. Eq. (A.78) or Eq. (A.79) is inserted for the relative configuration space volume of the

reservoir at the two end states. With this, we obtain

∆∆F fast,3
xw→xw = −β−1 ln

b∆N+1

(∆N + 1)!
(A.93)
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where the factor(∆N + 1)! accounts for the indistinguishability of the particles within the main

system (see Sec.A 5).

From comparison of Figs.4 and5, it can be seen that the correction terms are, especially for

the slow single move scheme, often comparable in magnitude to the transformation free energies

themselves.
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FIG. 4. The plots show the free energy difference for the three different transformation types of the particle

in the box models. For each of the transformation types the free energy is plotted for the transition of

a single-well model to a single-well model (left column) and for the transition of a single-well model

to a double-well model (right column) Positive and negative values are indicated by blue and red color,

respectively. Contour values are given inkcal/mol. Parameter values are given in the text (same as in

Fig. 6 of the main article).(a)-(b) The transformation involves a scaling of the frequency by a factora

and a scaling of the box length by a factorb. The plots are identical to the ones presented in Fig.Figure 5

of the main article and are reproduced here to facilitate comparison with the additional plots. (c)-(d) The

transformation consists of a scaling of the frequency by a factora and adding∆N particles from an external

reservoir.(e)-(f) The transformation consists of adding∆N particles from an external reservoir and scaling

of the box length by a factorb. (a), (c), (e)∆F0→1 for transformations with a transition from a single-well

to another single-well harmonic potential.(b), (d), (f) ∆F0→1 for transformations with a transition from a

single-well to a double-well harmonic potential.
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FIG. 5. The plots show the correction terms of the single move FEP schemes applied to three three different

transformations of the harmonic oscillator models. Positive and negative values are indicated by blue and

red color, respectively. Contour values are given inkcal/mol. Parameter values are given in the text (same

as in Fig. 6 of the main article).(a)-(c) The transformation involves a scaling of the frequency by a factora

and a scaling of the box length by a factorb. The plots are identical to the ones presented in Fig.Figure 5

of the main article and are reproduced here to facilitate comparison with the additional plots. (d)-(f) The

transformation consists of a scaling of the frequency by a factora and adding∆N particles from an external

reservoir.(g)-(i) The transformation consists of adding∆N particles from an external reservoir and scaling

of the box length by a factorb. (a), (d), (g) ∆∆F rand
0→1 Given otherwise equal parameters, the correction

term is identical for transformations leading from single-well to single-well or from single-well to double-

well harmonic potential.(b), (e), (h) ∆∆F equi
0→1 for transformations with a transition from a single-well to

another single-well harmonic potential.(c), (f), (i) ∆∆F equi
0→1 for transformations with a transition from a

single-well to a double-well harmonic potential.
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Appendix B: Efficiency of FEP simulations - bias and statistical uncertainty

To avoid confusion, we would like to begin this section by stressing that the correction terms

for the single-move FEP schemes derived in Sec.2.3 of the main article are unrelated to bias

or statistical error and the connected issues of imperfect sampling. All the example problems

presented in the main article and in the previous section aresolved analytically, that is with perfect

sampling, giving exact results. Actual problems of interest to the researcher however are mostly

not amenable to analytical solutions. Consequently, an estimate of the free energy difference has

to be obtained from numerical simulation data which suffersfrom statistical uncertainty and bias

caused by the finite sample size [15–17]. Thus, methods to minimize the inaccuracy of the free

energy estimates are of great interest. To pursue this aim, two principle routes are available.

The magnitude of the statistical uncertainty in the standard Zwanzig formalism is mainly de-

termined by the overlap of the occupation probability distributions of the end states [16], and

ultimately by the width and overlap of the distributions of energy difference values in forward and

backward direction [16, 18]. In our theoretical framework, the overlap measures how likely it is to

encounter the environmental subsystem in the same configuration when drawing samples from the

equilibrium distribution of the two end states. The first route aims at minimizing the statistical un-

certainty of the free energy estimate by optimizing the way the simulation is carried out, that is by

maximizing the overlap of the probability distributions. Acommon method to pursue this route in

FEP simulations is staging[19]. Staging breaks up the simulation in multiple steps by introducing

fictitious intermediate states - so called stages to increase the overlap between consecutive stages,

i.e., their similarity. The theoretical basis of staging isbriefly introduced in the next section.

The second route aims at minimizing the statistical uncertainty of a free energy estimate cal-

culated from a given body of simulation data. An example for methods following this route is the

Bennett acceptance ratio method [16] sometimes also called Bennett-Pande Method to recognize

its rediscovery and popularization by Vijay Pande and coworkers [20]. The Bennett acceptance

ratio method can be readily extended to comprise the FEP simulation schemes presented in this

work, as will be sketched in SectionB 2.

From a theoretical perspective, the distinction between the two routes is not always sharp. The

Bennett acceptance ratio method can for example also be interpreted theoretically as introduction

of an intermediate state in a position which maximizes overlap between the intermediate and both

end states [16, 21–23]. In addition, numerous other, sometimes related methods to improve sam-
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pling or minimize the statistical error exist which cannot be reviewed here. The interested reader is

referred to the works of Shirts et al. [20, 24, 25], Kofke et al. [22, 25], Götte and Grubm̈uller [26],

Straatsma and McCammon [27] and that of Christ and van Gunsteren [23] for a first approach to

this topic.

1. Staging

Instead of directly carrying the system from one end-state to the other the pathway is broken

down intoN int + 2 stages andM = N int + 1 steps by introducingN int fictitious intermediates

along a transformation coordinate0 ≤ λ ≤ 1 between the end states. Each stage is treated in the

same way as the direct perturbation between the end states within the FEP formalism. The total

free energy difference is then found by summing up the free energy differences of all the steps

∆F0→1 =
M
∑

i=1

∆Fi (B.1)

In the simplest case, the state energy of an intermediate is linearly interpolated between the end

states0 and1

Eλ = (1− λ)E0 + λE1 (B.2)

but other, more complicated definitions can be used as appropriate since the total free energy

difference is pathway independent. Likewise, the placement of the intermediates along the trans-

formation coordinate can be chosen freely to optimize the efficiency of the calculation. The con-

figuration space volume of the intermediate states is given by

Ψλ =























ΨeΨr
0 if λ = 0

ΨeΨr
1 if λ = 1

ΨeΨr
0Ψ

r
1 if 0 < λ < 1

(B.3)

The alert reader may have noted, that the correction terms for the single move FEP schemes

Eqs. (22) and (30) are not always dimensionless for perturbation steps leading from a physical

end state to one of the alchemical intermediate states or vice versa, and that these correction terms

cancel in the summation of the perturbation steps in Eq. (B.1). This is as it should be, since the

alchemical states possess an artificially increased dimensionality. Only the total free energy dif-

ference between the end states is physically meaningful andindependent on the chosen definition
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for the alchemical energy function, while the free energy profile along the coupling parameterλ

as transformation coordinate depends on this definition andthus is not physically meaningful.

2. The Bennett acceptance ratio method

For FEP between states with one reactive subsystem configuration each, Bennett showed [16]

that the free energy estimate minimizing the statistical error can be obtained by iteratively solving

∑

n0→1

1

1 + exp [β (E1 − E0)− C])
=

∑

n1→0

1

1 + exp [β (E1 − E0) + C])

(B.4)

for the constantC where the sums run over alln0→1, n1→0 being the number of perturbation

samples collected in forward and reverse direction, respectively. FromC,∆F0→1 can be calculated

via

∆F0→1 = β−1

(

lnC − ln
n1→0

n0→1

)

(B.5)

The standard deviation of the free energy estimate is given by

σ2 =
f [β (E1 − E0 − C)]20→1 − f [β (E1 − E0 − C)]

2

0→1

n0→1 f [β (E1 − E0 − C)]
2

0→1

+
f [β (E0 − E1 + C)]21→0 − f [β (E0 − E1 + C)]

2

1→0

n1→0 f [β (E0 − E1 + C)]
2

1→0

(B.6)

where the overbars denote the arithmetic average, the subscripts of the averages indicate the sam-

ples collected in forward and reverse direction as for the numbers of samplesn andf is the Fermi

function

f [x] =
1

1 + exp [−βx]
(B.7)

The formalism is extended to comprise the single move FEP schemes defined by Eqs. (23)

and (31) by correcting for the relative volume of the configuration spaces that contribute the energy

differences. For the random single-move scheme, this relative configuration space volume isln Ψ1

Ψ0
.

The corresponding relative configuration space volume for the equilibrated single-move scheme is

ln Ω1

Ω0
. Accordingly, Eq. (B.5) is modified for the random-single move scheme

∆F0→1 = β−1

(

lnC − ln
n1→0

n0→1

− ln
Ψ1

Ψ0

)

(B.8)
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This expression can be checked for consistency by insertingΨ1

Ψ0
times as much samples in reverse

direction as in the forward direction into Eq. (B.5).

Inserting Eq. (B.8) into Eq. (B.4) gives after a small rearrangement the iteration formula corre-

sponding to the multi-move FEP scheme defined by Eq. (13) as

∑

n0→1

1

1 + 1
Ψ0

∫

exp [β (E1 − E0)− C] dqr
1)

=

∑

n1→0

1

1 + 1
Ψ1

∫

exp [β (E1 − E0) + C] dqr
0)

(B.9)

The free energy difference is then obtained again from Eq. (B.5) and the corresponding standard

deviation of the free energy estimate is given by

σ2 =
f [β (E1 − E0 − C)]20→1 − f [β (E1 − E0 − C)]

2

0→1

n0→1Ψ0 f [β (E1 − E0 − C)]
2

0→1

+
f [β (E0 − E1 + C)]21→0 − f [β (E0 − E1 + C)]

2

1→0

n1→0Ψ1 f [β (E0 − E1 + C)]
2

1→0

(B.10)

where the averages are taken over the entire spacen1→0Ψ1 of collected state energy difference

samples.

Recently, extended versions of the Bennett acceptance ratio method were proposed by two

groups. The method of Maragakis et al. [28] includes collected data for multiple transformations

sharing a common reference end state in a simultaneous maximum-entropy estimation of all free

energy differences. The complementary method of Shirts andcoworkers includes all the inter-

mediate steps of a FEP simulation with staging simultaneously to obtain the maximum-likelihood

estimate of the free energy difference [25]. Both extensions offer improved results relative to

the original method. It seems likely that these extended methods can also be applied to the FEP

simulation schemes presented in the present paper with minor modifications.

Appendix C: Relation between Boltzmann entropy and S̈ußmann entropy

In this section, we want to carry on the discussion of the relation between the canonical Boltz-

mann entropy and the Süßmann entropy begun in Sec.2.4 of the main article. By examining

Figure 2(b), we can observe thatΩ andΩ̃ adopt equal values in the extreme limits ofK → 0 and

K → ∞ and that they differ in the intermediate range in which the state energyE of the occupied

microstate can differ. From comparison of Eqs. (40) and (41), it can be seen thatS = S̃ if the
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FIG. 6. Possible interpretation of the difference between Boltzmann and Süßmann entropy as measure

for the range of thermally accessible microstate energies. See text for detailed description of the system.

left: The differenceTS − T S̃ is plotted for three different arrangements of the microstates along the coor-

dinate as a function of the harmonic potential strenghthK. right: The three different arrangements of the

microstates along the coordinateq. Each circle represents a microstate. The colors of the circles are the

same as for the corresponding graphs on the left. In the bottom arrangement (black), the microstates are

evenly distributed along the coordinate. In the middle arrangement (red), the microstates are all found in

the center of the coordinate range. In the arrangement shown at the top (green), one microstate is found at

the center of the coordinate range while all other microstates are found at the minimum or maximum of the

coordinate range.

exponential average of the state energy equals the arithmetic average. This condition is only met

in the microcanonical ensemble or a degenerate system in which the state energy is also constant,

since generally−β−1 ln 〈exp [−βE]〉 ≤ 〈E〉. The difference between Boltzmann entropy Eq. (40)

and S̈ußmann entropy Eq. (41) is given by

T
(

S − S̃
)

= 〈E〉+ β−1 ln

∫

ρ exp [−βE] dq (C.1)

where we wrote the exponential average of Eq. (41) explicitly as integral. Next, we write the

arithmetic average in the form〈E〉 = −β−1 ln exp [−β 〈E〉]

T
(

S − S̃
)

= −β−1 ln exp [−β 〈E〉] + β−1 ln

∫

ρ exp [−βE] dq (C.2)
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By exploiting the relationln x− ln y = ln x
y
, we can write

T
(

S − S̃
)

= β−1 ln

∫

ρ exp [−βE] dq

exp [−β 〈E〉] (C.3)

Finally, we can write Eq.(C.3) as

T
(

S − S̃
)

= β−1 ln

∫

ρ exp [−β (E − 〈E〉)] dq

= β−1 ln 〈exp [−β (E − 〈E〉)]〉
(C.4)

From Eq. (C.4), a possible interpretation of the difference between the Boltzmann entropy and

the S̈ußmann entropy could be proposed as a measure of the intervalwidth over which the state

energy can vary between samples drawn from the equilibrium distribution, i.e., a measure of the

thermal fluctuations of the state energy. Thus,T (S−S̃) can be expected to be on the order ofkBT .

Alternatively, we could interpret this difference as measure of the uncertainty about the present

value of the state energy as opposed to the interpretation ofthe S̈ußmann entropy as uncertainty

in the position of the system in configuration space. Accordingly, the Boltzmann entropy would

measure the uncertainty in all microscopic system parameters at the same time. Here, uncertainty

is used in the same meaning as that used by Jaynes in the sense of incomplete knowledge about

the current state of the system [29]. That is we know the possible microstates, their respective

energies and the resulting occupation probability distribution, but we can not know in before the

exact identity of a microstate sampled from the equilibriumdistribution and thus also not the state

energy of the drawn sample.

In the remaining part of this section, a variant of the example system from Sec.3.1 of the

main article is used to obtain a qualitative picture of how the difference between Boltzmann and

Süßmann entropy in depends on the energy landscape of a system. The coordinateq might be

conceived as a one-dimensional projection of a more complexconfiguration space. Consequently

the microstates might be arranged in a way that differs from an even distribution alongq. Fig. 6

shows the difference between Boltzmann and Süßmann entropies for three different arrangements

of the 21 microstates alongq. For the arrangement shown on the middle right scheme, there

is no difference between the entropies, because all microstates are equivalent. Consequently the

exponential and arithmetic averages of the microstate energyE are equal for any potential strength

and the range of possible energy values is infinitely narrow.The linear arrangement in the bottom

right scheme is the same as in Sec.3.1. The difference between the entropies is small for low and
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high potential strengths but significantly positive at intermediate values ofK. This behavior can

be explained as follows. At low potential strength, the microstates have nearly the same energy so

that the range of possible values of the microstate energy isvery narrow. This results in a small

difference between the entropy measures. At high potentialstrength, essentially only the central

microstate with the lowest energy is thermally accessible so that the interval width of accessible

microstate energies is again effectively equal to zero. At intermediate potential strength, several

microstates of different energy can be populated and the interval width of thermally accessible

microstate energies is non-zero. A more extreme variant of the linear arrangement is used in the

arrangement shown in the top-right scheme (green). The corresponding entropy difference shows

a sharper extremum at intermediate values of the potential strength. For lower potential strengths,

the microstates have all very similar energies resulting ina narrow interval of thermally accessible

microstate energies and a small difference between the entropies. At higher potential strengths, the

energies of the outer microstates is so high in relation to the energy of the central microstate that

the outer microstates are not thermally accessible. Consequently the central microstate is the only

significantly populated microstate resulting in an interval of thermally accessible energy interval of

effectively zero width. The maximum difference is higher than for the linear arrangement because

all states except the central one are concentrated at the extremes of the coordinate range. A higher

number of microstates at a certain energy level entropically favors its population. This favoring can

compensate for unfavorably high energies and widen the range of microstate energies effectively

accessible to a system. This mechanism can lead to much higher differences between Boltzmann

and S̈ußmann entropies than for the example system shown here. In larger systems, the difference

can reach severalkBT .

In conclusion, the qualitative picture of the dependence ofthe difference between Boltzmann

and S̈ußmann entropy on the energy landscape of a system supports our proposed interpretation

of this difference as measure of the interval width over which the microstate energy can vary in an

ensemble.
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