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Appendix A: The classical particle in the box with a single-well or a doulbe-well harmonic potential

guantity harmonic potential type

single-well double-well

|_|
v

configurational partition function s _ 1 21 _pof [ Bmw? L N dw _ 1 Erf Bmwz L
(configuration integral) Q™ = Bmw? T 2 2 QM =mrly Bmw2 t
in SI units of [m?]

andssumm 1 (2 Bmw? L
(phasemtegral partition functlon) =N (;T:Erf {\/ =N 5}

2 2\ N 2 2\ N
. ) ) Erf |/ Bme” L Erf |/ Bme” L
effective configuration Gsw.a — L I < ' [ 2 ZD Gdw,a — L 167 < ' 2 4])
space volume NT Bmw? Erf[ /Brmw? %} - N Bmw? Erf[ Brmw? ﬂ
in S! units of [m?]

2\ N
Bmes? £:|) (Erf
- 2 2 _
effective phase space volume ~ Qs%-P:d = L B—” Qdw.pa = L1 | 87

in Sl units of [(Js)™]

TABLE I. Compilation of formulas for the description of the particle in the box elegresented in the
example section of the main text. The patrticles are identical, non-interactirad ¢ids) and indistinguish-
able. N is the number of particles; is the angular frequencys is the particle masd, is the box length,

B~ = ks T andExf is the error function (see EcA(8)).



1. Some useful mathematical relations

The listed relations can be found in standard math tables.

o0

/ exp [—axﬂ dr = \/g (A.1)

/exp [—axﬂ dr = \/gErf [\/Eg} (A.2)
/exp [—az®] dz = gErf {\/Eg} (A.3)
4 ILm Erf(z) =1 (A.4)
glgig(l) Erf(z) = % (A.5)
dInfaz] 1

de =z (A-6)

dln[aErf [bz]]  2bexp [—b*a?]
dx ~ /7Exf [ba] A7)

where N

Erf (x) = %/exp [—*] dt (A.8)

0
is the error function.

2. Description of the system

This model example demonstrates the application of our dtism to a dynamic system for-
mulated in non-dimensionless, continuous coordinates.rmbdel system consists of a particle of
massm in a one-dimensional box of lengih The spatial coordinatg is defined on the interval
—L < g < £. The momentunp must not be confused with the occupation probabjlityThe
potential energy is given by a single-well or double-welirhanic potential denoted byw or dw,

respectively. The Hamiltonian of the system is given by

2 2.2
=P md (A.9)
2m 2
mw? L 2.
g P2 )73 (a+%) ifa<o (A.10)
2m | e (q = LY g > 0



,\
R

1.5 ' ' ' : (b) 10

T

= 81
> =
1.0 [

qc) E 6-
© (=)

B s = 44
= 0.01 o

c Q

Q

—

o

o

()

PP

(Il/‘
43
=
=2
=
a

FIG. 1. Potential energy and probability distribution of the particle in a boxatsodith a single-well or

a double-well harmonic potential. The particle mass is sette 2 x 10725 [kg]. The box length of the
end state i€ = 1.6 x 10~ [m] and the angular frequencyds= 1.6 x 10'? [s~!]. (a) single-well (black
curve) or double-well (red curve) harmonic potential as function ofctin@figurationq (b) configuration
space probability distribution for the position of a single particle in a box with glesiwell (black curve)

or double-well (red curve) harmonic potent{a) phase space probability distribution for the position of a
single particle in a box with a single-well harmonic poten{ilphase space probability distribution for the
position of a single particle in a box with a double-well harmonic potential Thens of phase space with
a probability density higher than an Bl.ﬁﬂs)_l] are projected into the phase space plane and contoured
bold black to schematically show the effectively populated regions of @ whose volume is given by
Q). Please note that this cutoff value for the probability density is arbitrarytetdhe effective phase space
volume, defined by Eq3@), does actually not correspond to a region of phase space with shiandéries
since the probability density is non-zero throughout the whole phase spgion on which the model is

defined.



where the kinetic energy is given by the first terms on thetrdgind sides, whereas the potential
energy is given by the second terms on the right hand sidesclassical formulation as adopted
herep andq are independent. The strength of the harmonic potentiaterchined by the angular
frequencyw of the oscillator. The potential energy for the single-waeid double-well models
are plotted in Figl(a) as function of the spatial coordinaje In the following sections, we will
derive the necessary formalism to treat the particle in thherbodels. The derivations are given
in full detail to demonstrate the applicability of our FERrfalism to models in continuous, non-
dimensionless coordinates. The most important equatieed for the particle in the box example
of the main text are compiled in Tabléor quick reference.

In case of the single-well harmonic potential and an infipikerge box, the model is equivalent
to the well known classical formulation of the one-dimensibharmonic oscillator. The models
can readily be extended to the case of multiple non-interg¢ideal gas) particles. In this case the
model with a single-well potential and an infinitely largedman also be interpreted as a collection
of independent, classical harmonic oscillators.

3. Partition functions and probability distributions

We begin this section, with a short introduction of partitioinctions in general and their use-
fulness in (classical) statistical thermodynamics. Inrteen part of this section, we derive ana-
lytical expressions for the classical partition functi@mgl probability density distributions of the

harmonic oscillator models introduced in the previousieact

a. Zustandssumme and configuration integral in classical statistical théyrmamics

The Zustandssummg is given by the integral of the Boltzmann factetp [—5H| over the

whole phase space known as phase integral

7= [ expl-5H (p.a)) dpda (A11)

where the microstate of the system is given by a particulaofsealues forp andq. For classical
systems/ is separable in a kinetic energy tedi" depending only o and a potential energy

term EP°* depending only omy, and thus the phase integral can be expressed as produab of tw



independent integrals termed momentum integral and caatign integral

7 = / exp [~ BE*" (p)] dp / exp [~BEP (q)] dq (A12)

Typically, the range of momentum values is not restricteldus] the momentum integral is typi-
cally carried out over the intervatoo < p < oo yielding a constant factO{/WDN where
N is the number of particles in the system ainds the dimensionality of the system, that would
be D = 1 for our one-dimensional box. Since we formulated our magebintinuous coordinates,
the ratio of the Boltzmann factor and the Zustandssumme dsoprobability density

pa _ ©XP[—BH]
P P

- (A.13)

which upon integration over a certain region of phase spedsythe equilibrium probability, for
the occupation of this phase space region by the system

Pend
Aend

p= / pPvdpdq (A.14)

Pstart
Qstart

Often, we are not interested in the full phase space prabadistribution of the system but only
in the probability distribution of the system configuratiavhich can be obtained by integrating

the probability density at each configuration over the erainge of momentum values

pd = % / exp [-SH] dp
p?oo exp [—ﬁEkm (p)} dp exp [_BEpot (Q)] (A]_S)
i[w exp [_6Ekm (p)] dp fexp [_BEpot (q)] dq

where we see that the momentum integral cancels becaus®iison numerator and denominator.

Thus, the probability distribution of the configuration isen by

_ exp [-BEP]
Q

where the configuration integral is given by the integral

a

(A.16)

Q= /exp [—BE™] dq (A.17)



taken over the whole configuration space. Due to its role terdaning p?, @ is also called
configurational partition function. As for the phase spaaipbility density, a probability to find
the system in a given region of the configuration space carbtaen@d by integrating® over this

region

Qend
p= / p%dq (A.18)
Qstart

Often, the configurational partition function is partitexhfurther in a product of partition func-
tions each accounting for different energy terms and/oretsyof freedom, where the config-
uration q can be expressed in terms of different coordinate systenige s€parability of the
configuration integral, e.g., into translational, rotaiband vibrational partition functions does
involve the approximation that these motions are uncaedl|fl, 2]. Derived coordinate sys-
tems, such as internal coordinates, are not necessarilyathutndependent (or orthogonal) and
do not preserve the units of the initial, e.g., cartesianrdioates. Jacobians must be used for the
back-transformation into the desired coordinate sys@#i][ For some example applications of
Jacobians to molecular simulations in dihedral angle spaedrefs.§-10.

In the literature, often a factoy = hﬁ is added to Eq.A.11) to match the high temperature
limit of the corresponding quantum mechanical solution.e Tactor is omitted here, because
it is of no relevance to our purely classical treatment antcebs from all derived expressions
like free energy differenced[2]. Likewise, it would also be necessary to add the fadforo the
Boltzmann factor in the numerator of E&.13 to yield the normalization of the probability density
to the prescribed configuration space volume (charactébydinite potential energy) as expected
from a classical system. For further information on the negnf A" and possible interpretations,
the reader is referred to standard statistical mechamtisdeks fl, 11]. Also Refs. R, 12, 13]
might be helpful.

If the system can adopt several indistinguishable configurs, an additional factor needs to
be added to the partition functions Eg8.11) and @A.17) and likewise to the Boltzmann factor
of such degenerate microstates in Eds18), (A.15) and (A.16) to correct for this reduction of
the entropy. If for example, the system consists\gfindistinguishable particles, a prefactor of
ﬁ would have to be added to both partition functions and thezZgainn factors of all microstates
and configurations in EqsA(13), (A.15) and A.16).

Besides determining the microstate probability distritmsi, the partition functions or their

derivatives with respect to some parameter permit the lon of all thermodynamic state func-



tions of the system, for instance free energy, internalggnenthalpy, entropy, chemical potential

and pressure. This is exemplified at the calculation of teegure in Se®\ 6.

b. The particle in the box with a single-well harmonic potential

The Hamiltonian is given by EA.9. Consequently, the partition function is given by

L

i 2 7 2.2
AN /exp [—ii] dp/exp [_ﬁm;u d ] dq (A.19)
m

2

The configuration integral can be solved using q2] giving the configurational partition func-

27 Bmw? L
W= Erf |4/ —
@ Lmw? ' [ 2 2

The momentum integral can be solved using Bql) giving y/27mpg~! in [kng] The product

of momentum and configuration integral gives the total partifunction or Zustandssumme

2 2
g _ 2T [, [ Bmaw E] in Sl units of [kgm } = [Js] (A.21)
Bw 2 2 S

where( possesses units of lengin] and Z possesses units of acti¢hs]. In the limit of an

tion

in Sl units of [m] (A.20)

infinitely large box length, the well known expression foe thartition function of the classical
one-dimensional harmonic oscillator is recovered using(Ed)

lim Z°% = 2n in SI units of [J ] (A.22)

L—oo ﬁw
With the derived partition functions Eq#.20) and @A.21), and Egs.A.13) and @A.16) the prob-

ability density distributions in phase space and configoimagpace can be written as

exp [ 222
P = in Sl units of [m™'] (A.23)
szt | /24
PP = in Sl units of [(Js) '] (A.24)

T mw2
2y {, fom g}

In the last part of this section we will check our results fonsistency with physical expecta-
tions. The simplest check concerns the proper normalizatidhe derived probability distribu-
tions. The integral of the probability distributions E&.23) and (A.24) over the whole config-

uration or phase space should give a probability of unityrid the particle inside the integrated
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region. This can be seen to be the case, because the intefjthés variable exponential terms
in the numerator of EqsA(23) and A.24) yield again the partition functions, which also occur
as constants in the denominator of these equations. Fimalyvill consider the limiting case of
a vanishing harmonic potentidle , w — 0. In this case, one would expect a uniform proba-
bility distribution throughout the entire box. The corresding limit of the configuration space

probability density is found using EGA(B)

li swW,q _ v hmw_}o *xp [ /Bmc; *

im p =

w—)O ﬁmwQ L
lim,,_,o Erf 5

,Bmw2 1

f Bmoﬂ g (A.25)

Bmw?
2w 1

Brmw?
21 L
1 . . 1
=7 in Sl units of [m™"']

and confirms our expectation.
The configuration and phase space probability densityibligions are plotted for concrete

example parameters in Figy(b) and (c)

c. The particle in the box with a double-well harmonic potential

The Hamiltonian is given by EdA.10. Consequently, the partition function is given by

00 0 N2
Zv = /exp {—5—5] dp /exp [_Bmuﬂ (q+ Z)

L

2 9 L)\2
dq+/exp [_Bmw (q 4) ] dq

2 2

0

(A.26)
where we need to perform a piecewise integration to obtamctdmfiguration integral, because of
the piecewise definition of the potential energy. The coméigan integral can be solved using
Eq. (A.3) with a variable substitution settingf = q + % After re-substitution we obtain

dw 87 | Bmw? L
@ = Bmszf[ 2 4

in Sl units of [m] (A.27)
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The momentum integral can be solved using Bql) giving y/27mm5~! in [1%} The product

of momentum and configuration integral gives the total partifunction or Zustandssumme

4 2L
z4w = “T s [,/Bm“’ -
Bw 2 4

where() possesses units of lengi| andZ possesses units of actighs]. In the limit of an in-

. . ke m?
in Sl units of{ gsm } = [Js] (A.28)

finitely large box length, twice the well known expressiontfte partition function of the classical

one-dimensional harmonic oscillator is recovered using(Ed)

4 . .
lim 7% = =° in Sl units of [J s] (A.29)

L—o0 Bw
In the limit of L — oo, the potential wells are separated infinitely far from eattteq thus each
potential well should be equivalent to a system with a skvgdd harmonic potential of equal
strength. Consequently, the partition function of the sysi this limit should be twice that of
the equivalent system with the single well harmonic potnivhich is confirmed by comparison
of Eq. (A.22)) with Eq. (A.29. With the derived partition functions EqsAR7) and @A.28), and
Egs. A.13) and (A.16) the probability density distributions in phase space amdfiguration

space can be written as

exp [_ —BmZ}QqQ ]

pvd = in SI units of [m™'] (A.30)
e |/
_ Bp? _ Bmw?q?
dwpa _ L [ il ] in Sl units of [(Js)™
oma_ 097 (3D

™ mw?
o {, [om g]

In the last part of this section we will check our results fonsistency with physical expecta-
tions. The simplest check concerns the proper normalizatidhe derived probability distribu-
tions. The integral of the probability distributions Ega.30) and (A.31) over the whole config-
uration or phase space should give a probability of unityrid the particle inside the integrated
region. This can be seen to be the case, because the intefjthts variable exponential terms
in the numerator of EqsA(30) and A.31) yield again the partition functions, which also occur
as constants in the denominator of these equations. Nextjilveonsider the limiting case of a
vanishing harmonic potentiale , w — 0. In this case, one would expect a uniform probability
distribution throughout the entire box. The correspondimgt of the configuration space prob-

ability density is found using EqA(5) and exploiting the symmetry of the harmonic potential
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FIG. 2. Effective configuration space volume and effective phaaeespolume of the particle in a box
models with a single-well or a double-well harmonic potential. The effecthsp space volume of a
given model differs from its the effective configuration space volumg lopa constant facto 4”7’”. The
particle mass is set ta = 2 x 1072¢ [kg]. The angular frequency for (a) and (b) is sette- 10726 [s~!].
The box length for (c) and (d) is setfo= 1.6 x10~? [m]. (a) configuration space volume of the single-well
(black curve) or double-well model (red curve) as function of thelbogth L (b) phase space volume of the
single-well (black curve) or double-well model (red curve) as fumctibthe box length. (c) configuration
space volume of the single-well (black curve) or double-well model ¢tede) as function of the angular
frequencyw (c) phase space volume of the single-well (black curve) or double-well n{oektlcurve) as

function of the angular frequency

aboutq =0

ﬁme(Iq—ﬁ)Q]

2 5.
& 1My, 0 €XP {— 5

hH(l] P =
w—
lim,,_,o Exf {1 / 6”;“2 ﬂ

Bmw?
8w 1

2 [ L (A.32)
N 2 4

Bmw?
8m 1

Bmw?
81 L

in Sl units of [m™']

and confirms our expectation.
The configuration and phase space probability densityibligions are plotted for concrete

example parameters in Fifyb) and (d)
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4. Effective phase space and configuration space volume

The effective configuration (phase) space volume was ioted in the main text as measure
for the volume of the effectively populated regions of confggion (phase) space. In the context
of our model formulated in a continuous coordinates, theagiffe configuration and phase space

volumes are obtained from

95— (A.33)

OPa —

J (pP9)* dpdq (A-34)

In the following two sections, we will derive and examine crate expressions for the phase and
configuration space volume of our particle in the box modeth & single-well and double-well
harmonic potential. The effective configuration space dmabp space volumes for these models

are plotted in Fig2 as function of the box length and as function of the angular frequengy

a. The particle in the box with a single-well harmonic potential

The effective configuration space volume is found from E4s38) and A.23) with the aid of
Eq. (A.2)

Il
o

B)

|
NIl \M\h

D

o]

i
o
=

3

&
o

Q
‘_,M

(oW

Noj

- 2
(Erf 8 ";“ﬂ % )
! ] (A.35)

from which we obtain

2
% in SI units of [m] (A.36)
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The limit of the effective configuration space volumelagpproaches infinity is found by making
use of EQA.4

lim st7q — 4—7T
L=0 Bmw?

(A.37)

In the limit of a vanishing harmonic potential, the effeetsonfiguration space volume approaches
the box lengthl

()
L (7 = ﬁj;? L imL
W 3
g (A.38)
Brmw? \/ngTL
I

where we made use of EA.5. This confirms what one would expect on physical groundsabse
in absence of the harmonic potential the particle shouldd®tb move anywhere inside the box.

The effective phase space volume is found from Eds34) and @A.24) with the aid of
Egs. A.1) and A.2)

Nyl

1

)sw.p.q

= / (p™P9)* dpdg

2
472 Bmw? [
P (Erf V' ‘D (A.39)

from which we obtain

Bmw? L
stpq 4m <Erf [ g 5:|

in SI units of [J ] (A.40)
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The limit of the effective phase space volumelaapproaches infinity is found by making use of
Eq.A.4
lim QF"Pd = —— (A.41)

In the limit of a vanishing harmonic potential, the effeetiphase space volume approaches the
box lengthL times the constant factqr “Tm originating from the additional integration over the
momentum space in EqsA.R1) and A.35) in comparison to EqsA(20) and @A.35) which are

the analogous equations formulated in configuration space

(L e L
- 4 NG 2 2
lim Q°%P4 T
w—0 Bw \% Bmw? %

| d4m Bptp? (A.42)

B ﬁ_w ’BW;WQL

4
_ A,
s

where we made use of EA.5.

A last interesting comparison &ifny, . Q4 can be made to the amplitudeof an equivalent
harmonic oscillator moving under deterministic Newtonma@chanics without the stochastic fluc-
tuations induced by the heat bath. The total energy of thilatsc is set equal to the mean total
energy(H) = 3! of the stochastic oscillator. The amplitude is found byisgtthis energy equal

to the maximum potential energy (see E4.9)) of the oscillator at an extensiapn= A

1
Eﬁi)jx = émMQqEnax
N (A.43)
5—1 — —mw2A2
2
from which we obtain
2
A=\ G (A.44)
Comparison to EqA.41) shows )
Ii 95
HHL% = \Vor (A.45)

that is, the effective configuration space volume is a fagtor larger than the corresponding

deterministic amplitude.
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b. The particle in the box with a double-well harmonic potential

The effective configuration space volume is found from E4s338) and (A.30) exploiting the
symmetry of the harmonic potential abayt= 0 using Eq. A.1) for the momentum dependent
integral and Eq.A.3) for the configuration dependent integral using the temyovariable sub-

- - L . .
stitutionq’ = q + 7 for the integration

Bmw I 2
— 27 — 2 exp[ Bmw? (q+z> dq
(Erf VS ) %
_B o (A.46)
= Erf | v/ Smw?—
\ 166m 2 [ 1
(Erf \/ﬁ % )
[ Erf[ Bmuﬂﬂ
167 2
(s [y
from which we obtain
2
(1 W““D
dw 167 , ,
Qdva = in SI units of [m] (A.47)

Bmw? Erf wQZ]

The limit of the effective configuration space volumelagpproaches infinity is found by making
use of EQA.4

Qv lim = Lom
L—o0 Bmw?

(A.48)

Eq. (A.48) is twice the corresponding limit of the configuration spaokime for the single-well
model Eq. A.37), The factor2 can be rationalized by recognizing that the double-well ehasl
in this limit equivalent to two single-well models separdhtyy an infinitely large distance. In the

limit of a vanishing harmonic potential, the effective cguifiation space volume approaches the
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box lengthL
B0
QWA Jip = 16m_\ V" c
w—0 ﬁmuﬂ % 5mw2%
16’/T /BT;L:U2 %2 (A49)

-V pmw? [ Bmw? L
T 2

=L

where we made use of EA.5. This confirms what one would expect on physical groundsabse
in absence of the harmonic potential the particle shouldd®tb move anywhere inside the box.
The effective phase space volume is found from Ey84) and (@A.31) with the aid of Eq. A.1)
for the integration of the momentum dependent integral.ii@uthe integration of the configura-
tion dependent integral, the symmetry of the harmonic gateaboutq = 0 is exploited and a

temporary variable substitutiagi = q + § is used to be able to employ E®.B8)

L
2
. _ / (p™P9)* dpdq

()dw.p,q

2
i (e [y 24
B 24 (A.50)

from which we obtain

2
mw?
~ 8 (Erf{ 52 %]) . .
Qdwpa — in SI units of [J s] (A.51)

N

The limit of the effective phase space volumelagpproaches infinity is found by making use of
Eq.A4

~ . &
QIvPa iy = —
L—o00 Bw

(A.52)
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which is twice the corresponding phase space volume of thegmonding single-well model
Eq. (A.52), as can be understood by the same arguments employed inténpretation of the
configuration space volume Edj.@8) in this limit. In the limit of a vanishing harmonic potentia

the effective phase space volume approaches the box Iéngithes the constant factar, 4”7’“

originating from the additional integration over the moren space in EqsA.28) and (@A.46) in

comparison to EqsA(27) and A.46) which are the analogous equations formulated in configura-

2
2 4
pt figy — ST AV

w—=0  fw % Bmaﬂ%

mw2 2
g Coes Lo (A.53)

N 50) [ Bmw? L
T 2
4
_ A,
5

tion space

where we made use of EA.5.

5. Extension of the formalism to multiple non-interacting particles

The patrticle in the box models presented in the previoussecare readily extended to the
case of multiple, non-interacting (ideal gas) particlesdiag in the box. Since the particles do not
interact, the integration of the partition function can lmme for each particle separately and the

total partition functions are given by the product of theividual one-particle partition functions.

N

Z = 1:[1 Zi= Zé\rilefparticle (A54)
il N

Q = H QZ: Qone—particle (A55)
=1

The same applies to the total configuration space voldméhe effective configuration space

volume(2® and the effective phase space voluftie?
N
v o= 1:[1\111 = \Iltj)\:lefparticle (A56)

- N - N
QP = - Qf = <Q(I))ne—particle> (A57)

one—particle

Gra _ [ P (vaq )N (A.58)
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If the particles are indistinguishable, the number of dctoi@rostates of the system is reduced
by a factor%, which is given by the number of possible permutations ofgghgicle identities
denoted in Egs.A.54), (A.55), (A.56), (A.57) and A.58) by the index variablé. Consequently,
has to be added to Eq#\.64), (A.55), (A.56), (A.57) and A.58) if the particles are

indistinguishable.

the factors;

6. Pressure

In this section we will derive expressions for the pressdreuw particle in the box models
from the partition functions obtained in S&&3 as example for the derivation of thermodynamic
state functions from the partition function. The resultexpressions for the pressure in certain
limiting cases will be verified by comparison to well knowrsuéis of elementary statistical ther-
modynamics. The text-book expression for the externalspires’*** exerted against the walls of

the box is given by the negative derivative of the free enevigly respect to the box length

Pext . dF
~dL
gpext — —dInZ (A.59)
- dL

where we note that the momentum integral and other possilllgdiconstant factors independent
on L, like the factorﬁ introduced in the previous section to account for the imugstishability

of the NV particles can be separated off the configurational integmdl vanish upon differentia-
tion. For simplicity we compile all factors independent bnn the constant, and express the
configurational partition function in terms of the one-paet partition function, assuming again

N identical, non-interacting particles

—dlIn Q(J)\;e—particle + dlne

Bpext —
» dL dL (A.60)
ﬁP _ —dIn Qonefparticle
N dL

The external pressure of the single-well and double welnaaic potentials can now be derived
by substitutingQ one—particie With the corresponding configurational partition functigen by
Eq. (A.20) or Eq. A.27), respectively. The differentiation is carried out by nrakuse of Eq.A.7)
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from which we obtain

ﬁpext,sw \/ % exXp [—BmTfUQLQ]

= A.61
N Erf Bmw? L ( )
iy =2
/ fmw? Bmw? 12
Pext,dw Tom exXp | — ==L
g Y2 [ > ] (A.62)

N —
2Erf [\/ 8 5 %}

To confirm result we consider the limit of Eq#.61) and A.62) asw approaches zero, that is

in the absence of the harmonic potentials. Making use of £&)(we obtain for the single-well

model
Pt /5
ili% N - 2 /Bmw? L
o= B3 (A.63)
B 1
L

Making again use of EqA(5), we obtain for the double-well model

Bmw?
Pext,dw - 1
%11110/6 N — 2 -
- 2 mw? L
22/ k (A.64)
1
L

The limiting cases EqsA(63) and A.64) match the ideal gas law, confirming our result. Another
interesting limit of the external pressure is obtained @ering the limit. — oo, which is equal

to the limit forw — oo

) Bpext,sw ) BPext,sw
lim = lim

L—oo w—00

=0 (A.65)

In both cases, the particle does essentially never reaciadle of the box, explaining why the

external pressure approaches zero in these limits.

7. Correction terms for the free energy perturbation schemes

In this section, we derive explicit expressions for the FERaxtion terms introduced in Sez.
of the main article as applied to the particle in the box medalve will demonstrate the sig-
nificance of these correction terms at our example systentisspiecial emphasize on the units

acquired by the correction terms and the single move FEBraitethemselves. Furthermore, we
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will extend the example transformations of the particlehi@ box models presented in S8c4 of
the main paper with two more model transformations in whigharticle number in the system
changes during the transformation.

The correction terms for the fast and slow single move FERmels derived in Se@.3 are
given by (from Eqs.46) and @5))

AAF™ — =ty — il (A.66)
Wy
equi 1 Q1
AAFS™ = -7 n — (A.67)
Wy
From Egs. 23) and 31) we know that
AR = AFyy — AAF™E (A.68)
AFS™ = AFy_, — AAFSY (A.69)
Substituting
AFy = —f'In 2 & (A.70)
Qo’
AAF with Eq. (A.66) andAAF™ with Eq. (A.67) we obtain
AR = =~ In @50 (A.71)
AF%y = —f Inghgo (A72)

From SecsA5 andA5 we know that the configurational partition functiéhas well as the to-
tal configuration space volumé and the effective configuration space volufdérave units of
[mPY], whereD is the dimensionality of the systend(= 1 in our case) andV is the number
of particles in the system. From the expressions for the dremrgy difference EqA.70), for
the free energy estimates from the single move FEP schemeg/Adl) and A.72) and their
corresponding correction terms EgA.§6) and (A.67), it can be seen that the dimensionality and
the total number of particles is required to be constantngutiie transformation for the units to
cancel. Now one might ask how the formalism can be applied thhéransformations involving a
change in the number of particles residing in the systemritrciple there can be two reasons for
a change in the particle number. The first possibility is astebution of mass among the parti-
cles (for example by aggregation or disaggregation of gad). In this case the number of actual
particles (for example atoms) would in reality still be tlzeree, but their spatial position might be

highly correlated if the interaction of the particles isywstrong. Nevertheless, the particles will
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still retain some freedom of relative movement, becausestiiopic cost of fixing their relative
position would be infinitely high. If the aggregates have iy weell-defined, almost rigid structure,
the entropic contribution of their relative movement tofifee energy can be made implicit assum-
ing a constant energy term describing the formation of thgegate, and the particle aggregate
can then be treated as one particle during the simulatioe.s€tond possibility is the exchange
of particles with an external reservoir. In this case theniadation of the problem must include
the particles of the reservoir. In the calculation of birgdfree energies, the unbound particles in
the reservoir are often treated implicitly by inclusion off@mical potential term accounting for
the free energy cost of removing them from the reservoir {seexample Ref.14]). An explicit

inclusion of the reservoir particles in the present forsraliransforms EqsA(66) and A.67) into

AAFR = —p~t I SV (A73)

main yres
lI]O \IIO
~d,main §q,res
Q1 Q1

T (A.74)

where the superscriptaain andres indicate the main model and the particle reservoir, respec-

tively. Similarly, the expression for the transformatioad energy becomes

B ernaianies
AFy = —ft1In <L (A.75)
0—1 leamQBes

a. Definition of an external particle reservoir

As mentioned above, the treatment of a transformation wiwglthe addition of particles from
an external reservoir to our main system requires the iraiusf the particles within the reservoir
into the description of the initial state. In order to inctuithe reservoir in the formalism we need
a knowledge about the nature of the reservoir and its enesgetor our example, we will use
the simplest possible definition of a particle reservoiridiegl in Fig3. The reservoir consists
of an (infinitely) large numbeX of one-dimensional boxes of length (the same length as our
particle in the box model in the initial stat®. Each individual box contains exactly one particle
identical to the particles in the main system. The potermirargy within the reservoir boxes is
zero. The reservoir has the same temperature as the maemsy8fluring the transformation,
AN particles will be removed from the reservoir and inserted the main system. The particles
are not exchangeable between the individual boxes and asdrated as distinguishable. With

this model of the particle reservoir and the number of rerdguarticles, we can write the total
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1@ |2 @3 @ |4 ® s 0

FIG. 3. An infinite particle reservoir formed by one-dimensional boxdsrajth ., containing one particle

each. The particles can not be exchanged among the boxes and seqwemtly treated as distinguishable.

configuration space volume of the particle reservoir in thiail state0 and the final staté as

X
U =11 Lo (A.76)
i=1
X—AN
e = [ Lo (A.77)
=1
\Ijres
L — [ AN (A.78)
\IJECS

One can see, that, with this simple definition of the partielgervoir, we do not need knowledge
about the total number of particles within the reservoirdnly about the change in the reservoir’s
particle number accompanying the transformation to be Eblmecify%: in Egs. A.73) and

(A.74). Note that, since the potential energy in the reservoielsas zero, the effective configura-
tion space volume is equal to the total configuration spatenwve and also to the configurational

partition function and thus
Qq,res
1
\Ijées
For the same reason, also the configurational partitiontimmds equal to the total configura-

= Lg~N (A.79)

tion space volume. Like the total configuration space volutne total configurational partition

function is given by the product of partition functions faetindividual reservoir boxes and thus

gjes =Ly~ (A.80)
0

b. Model transformations

In this section, we will state explicit expressions for tlerection terms in case of several
example transformations of our particle in the box modettuiding the example transformation
presented in the main text and examine their magnitude atretsnumeric examples. The trans-
formations can involve a change in box length, angular feegy, potential type (single-well or

double-well) and number of (ideal gas) particles:
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e 1: scaling of the angular frequency by a factaand scaling of the box length by a factor
e 2: scaling of the angular frequency by a factand adding ofA NV particles
e 3: adding ofAN particles and scaling of the box length by a factor

The model transformatiori’sand3 can also be interpreted as a simplified model of binding, wher
the number of particles in the main system would represenntimber of bound particles, the
magnitude of the angular frequency would determine theagtheof the interaction of ligand and
receptor, and where a change in the box length during theftramation would correspond to a
change in the total available configuration space voluma inoading. For a real binding reaction,
the available configuration space volume will mostly deseeapon binding because the ligand
and receptor need to come into close proximity and need tptadmfigurations (overall rotation,
internal conformation) compatible with the bound state.

In the following, concrete expressions are stated for threesponding correction terms re-
quired for the application of the random single-move (fast)l for the single-move FEP scheme
according to the equilibrium distribution of the target estdte (slow). For the slow single-move
FEP scheme, the correction terms are given for a transitan & single-well particle in the box
model as end state and a single-well or double-well model as end stgteespectively. In the
fast single-move FEP scheme, the correction term does ipeindieon the effective configuration
space volume of the target end state, but on the total coafigurspace volume only. Thus, the
correction terms are identical for the single-well or daahblell particle in the box models as target
end state for the fast single-move FEP scheme. Consequéindg, variants are given for each of

the three transformation types:

e sw — sw: transition from a single-well to a single-well model in tfaest single-move FEP

scheme

e sw — sw: transition from a single-well to a single-well model in tslew single-move FEP

scheme

e sw — dw: transition from a single-well to a double-well model in thlew single-move
FEP scheme

The particle mass is setto = 2.0E-26[kg]. For all three transformation types, the box length

of the initial state0 is L, = 1.6E-09]m|, its angular frequency isy, = 1.0E+12[s™!] and its
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particle number isVy, = 1. Furthermore, the initial state possesses always a swelldharmonic
potential. The length of the individual boxes of the paetiokservoir isL,. See SecA7 a for

a detailed description of the particle reservoir. In thdoiwing the transformation type will be
indicated by the superscripts attached to the symbols ofrégeenergy changes and correction
terms.

In the first transformation type, the frequency and the bogtle are scaled by a constant fac-
tor so thatw; = awy and L; = bLy where{a,b} > 0 are constant factors. The free energy
differences for the transition from a single-well model tgiagle-well model or a double-well
model are plotted in Figd(a) and (b). The correction terms corresponding to the taeants are
plotted in Fig.5(a)-(c). Expressions for the transformation free energresformulated accord-
ing to Eq. A.75) using the configurational partition functions of the paeiin the box models

Egs. A.20) and Egs. A.27). The ratio of the reservoir configurational partition ftinos is sub-

stituted with Eq. A.80).
Erf [\/ el %}

AF), o =—5"In (A.81)
aErf [ Bmesg @1
2 2
Frf {\ [omfas? b1 ]
AF! =—(3"'In (A.82)

sw—dw B L
2aErf {\/ TOTO}

Expressions for the correction terms can be obtained bytingehe total and effective configu-
ration space volumes into Eq#.73) and Egs.A.74). The effective configuration space volumes
are taken from EqsA(57) and (A.36) or (A.47) for the single-well and double-well models, re-

spectively. With this, we obtain

AAFPY - — 37 1np (A.83)

XW—>XW

AAFEY! = 371 n (A.84)
LoErf [ Bm (awO)QbLTO}
Brm(awo)? b :
167 m(awo)” bLg
slow 1 . Bm(awp)? (Erf |: 2 401 )
AAF. o, =—0 "In (A.85)
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In the second transformation type, the frequency is scajea tonstant facto# > 0 so that
w1 = awy andAN particles are taken from an external reservoir describ&emA 7 aand added
to the system. The correction terms corresponding to tleethariants are plotted in Fig(d)-(f).
Expressions for the transformation free energies are flated according to EQA(75) using the
configurational partition functions of the particle in thexomodels Eqs.A.20) and Eqgs. A.27)
and the rules to calculate thg particle partition functions for indistinguishable paléis from

them (see Sed®d5). The ratio of the reservoir configurational partition ftinos is substituted

with Eq. (A.80).
AN+1
T / Bm(aw 2
( ,Bm(Qawo)2Erf |: (2 g %:|>
AF2 . =—8'In (A.86)
(AN + 1)l /508 o Erf [\/M%] LgN
AN+1
87 Bm(aw )2 Lo
(/smizrert [ E=n)
AF? —f'1n (A.87)

sw—dw
AN—f— 1 ' 27r Erf IBmwO LO L N
( )

Expressions for the correction terms can be obtained bytingehe total and effective configu-
ration space volumes into Eq#.73) and Eqgs. A.74). The effective configuration space volumes
are taken from EqsA.57) and @A.36) or (A.47) for the single-well and double-well models, re-
spectively. Eq.A.78) or Eq. A.79) is inserted for the relative configuration space volumehef t

reservoir at the two end states. With this, we obtain
1

AAFES2 — 3y A.88
AN+1
(7 (e [y=5)) )
AAFRNS, = =B n — (A.89)
(AN +1)! <L0Erf l pSm (awp) f})
AN+1
167 Bm awo
< Bm(awo) (Erf |: >
AAFZY? — 3 1n (A.90)

5 1 (st To])”“

where the factof AN + 1)! accounts for the indistinguishability of the particleshiit the main
system (see SefAb).
In the third transformation type, the length is scaled by astant facto > 0 so thatL, =

bLy and AN particles are taken from an external reservoir describegeinA 7 a and added to
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the system. The correction terms corresponding to the tragants are plotted in Figh(g)-(i).
Expressions for the transformation free energies are flated according to EQA(75) using the
configurational partition functions of the particle in thexomodels Egs.A.20) and Egs. A.27)
and the rules to calculate th€ particle partition functions for indistinguishable pakés from
them (see Sed5). The ratio of the reservoir configurational partition ftinos is substituted

with Eq. (A.80).

mee? AN+1
21 mwy bL
S ¢ Uk
APjsw—)sw = _ﬁ In (Agl)
2
N+ 12t | 1y
AN+1
87 Erf \/—Bmw%bL—O |
5 . Bmwg 2 4
AFS 4w =—5""In (A.92)
(AN + 1)l [ gozErf {\/W%%] LN

Expressions for the correction terms can be obtained bytingehe total and effective configu-
ration space volumes into Eq#.73) and Eqgs.A.74). The effective configuration space volumes
are taken from EqsA(57) and A.36) or (A.47) for the single-well and double-well models, re-
spectively. Eq.A.78) or Eq. A.79) is inserted for the relative configuration space volumehef t

reservoir at the two end states. With this, we obtain
bAN—H

AAFfast,S — —11 e A.
XW—>XW 6 n (AN + 1)' ( 93)

;3mw2
( 47Tg (Erf 0 bLg
_6 1 ln

AANESSS = - (A.94)
SW—>SW +1
(AN +1)! (LoErf [\/ﬂmwgl’%o )
( 9 AN-+1
1l i)
Bmwg ( 2 4
AAFSYS — _371n - (A.95)

(AN + 1)! (LOErf [WTO])ANH

where the factof AN + 1)! accounts for the indistinguishability of the particleshiit the main
system (see SefA.b).

From comparison of Figgl and5, it can be seen that the correction terms are, especially for
the slow single move scheme, often comparable in magnitutieettransformation free energies

themselves.
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FIG. 4. The plots show the free energy difference for the three diftdransformation types of the particle
in the box models. For each of the transformation types the free energytiedofor the transition of

a single-well model to a single-well model (left column) and for the transitiba single-well model
to a double-well model (right column) Positive and negative values aieatedl by blue and red color,
respectively. Contour values are givenkienl/mol. Parameter values are given in the text (same as in
Fig. 6 of the main article).(a)-(b) The transformation involves a scaling of the frequency by a factor
and a scaling of the box length by a factorThe plots are identical to the ones presented in IFigure 5

of the main article and are reproduced here to facilitate comparison with tlittoadtplots. (c)-(d) The
transformation consists of a scaling of the frequency by a facémd addingA N particles from an external
reservoir.(e}(f) The transformation consists of addidgV particles from an external reservoir and scaling
of the box length by a factar. (a), (c), (e) AFy_1 for transformations with a transition from a single-well
to another single-well harmonic potentigh), (d), (f) AFy—,; for transformations with a transition from a

single-well to a double-well harmonic potential.
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FIG. 5. The plots show the correction terms of the single move FEP scheplesidp three three different
transformations of the harmonic oscillator models. Positive and negativesvate indicated by blue and
red color, respectively. Contour values are giveldal/mol. Parameter values are given in the text (same
as in Fig. 6 of the main articleja)-(c) The transformation involves a scaling of the frequency by a factor
and a scaling of the box length by a factorThe plots are identical to the ones presented in [Figure 5

of the main article and are reproduced here to facilitate comparison with tltgoadtplots. (d)-(f) The
transformation consists of a scaling of the frequency by a facémd addingA N particles from an external
reservoir.(g)-(i) The transformation consists of addidgV particles from an external reservoir and scaling
of the box length by a factdr. (a), (d), (g) AAFE*! Given otherwise equal parameters, the correction
term is identical for transformations leading from single-well to single-weffam single-well to double-
well harmonic potential(b), (e), (h) AAFgﬂ‘f for transformations with a transition from a single-well to
another single-well harmonic potentigk), (f), (i) AAng“li for transformations with a transition from a

single-well to a double-well harmonic potential.
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Appendix B: Efficiency of FEP simulations - bias and statistical uncetainty

To avoid confusion, we would like to begin this section byessing that the correction terms
for the single-move FEP schemes derived in S&8.of the main article are unrelated to bias
or statistical error and the connected issues of imperfactpting. All the example problems
presented in the main article and in the previous sectios@wed analytically, that is with perfect
sampling, giving exact results. Actual problems of inteteghe researcher however are mostly
not amenable to analytical solutions. Consequently, amaggi of the free energy difference has
to be obtained from numerical simulation data which suffesm statistical uncertainty and bias
caused by the finite sample sizZE5F17]. Thus, methods to minimize the inaccuracy of the free
energy estimates are of great interest. To pursue this aionptinciple routes are available.

The magnitude of the statistical uncertainty in the statidavanzig formalism is mainly de-
termined by the overlap of the occupation probability dsttions of the end stated ], and
ultimately by the width and overlap of the distributions akegy difference values in forward and
backward direction]6, 18]. In our theoretical framework, the overlap measures h&elyiit is to
encounter the environmental subsystem in the same contiigurehen drawing samples from the
equilibrium distribution of the two end states. The firstteaims at minimizing the statistical un-
certainty of the free energy estimate by optimizing the wegydimulation is carried out, that is by
maximizing the overlap of the probability distributions.cAmmon method to pursue this route in
FEP simulations is staging]. Staging breaks up the simulation in multiple steps byodticing
fictitious intermediate states - so called stages to inerd@soverlap between consecutive stages,
i.e., their similarity. The theoretical basis of stagindpigefly introduced in the next section.

The second route aims at minimizing the statistical unadstaf a free energy estimate cal-
culated from a given body of simulation data. An example fetimods following this route is the
Bennett acceptance ratio methdd] sometimes also called Bennett-Pande Method to recognize
its rediscovery and popularization by Vijay Pande and ciéexs R0]. The Bennett acceptance
ratio method can be readily extended to comprise the FEPI&iimn schemes presented in this
work, as will be sketched in Sectid@2.

From a theoretical perspective, the distinction betweertwo routes is not always sharp. The
Bennett acceptance ratio method can for example also bgiated theoretically as introduction
of an intermediate state in a position which maximizes @aggebdetween the intermediate and both

end states][6, 21-23]. In addition, numerous other, sometimes related methodsprove sam-
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pling or minimize the statistical error exist which cannetrbviewed here. The interested reader is
referred to the works of Shirts et aR(), 24, 25|, Kofke et al. R2, 25|, Gotte and Grubraller [26],
Straatsma and McCammo®7] and that of Christ and van Gunsterét8] for a first approach to

this topic.

1. Staging

Instead of directly carrying the system from one end-statdé other the pathway is broken
down into N + 2 stages and/ = N™ + 1 steps by introducingv® fictitious intermediates
along a transformation coordinate< A < 1 between the end states. Each stage is treated in the
same way as the direct perturbation between the end statas Wie FEP formalism. The total

free energy difference is then found by summing up the fregggndifferences of all the steps
M

ARy =) AF, (B.1)
=1

In the simplest case, the state energy of an intermediateearly interpolated between the end
stated) and1
E\x=(1—=\) Ey+ \Ey (B.2)

but other, more complicated definitions can be used as apategsince the total free energy
difference is pathway independent. Likewise, the placdrokthe intermediates along the trans-
formation coordinate can be chosen freely to optimize theiency of the calculation. The con-

figuration space volume of the intermediate states is giyen b

TPy ifA=0
U= 0oyt jfa=1 (B.3)
TP if0< <1

The alert reader may have noted, that the correction termghésingle move FEP schemes
Egs. €2) and @0) are not always dimensionless for perturbation steps hegfitom a physical
end state to one of the alchemical intermediate states eneisa, and that these correction terms
cancel in the summation of the perturbation steps in Bdl)( This is as it should be, since the
alchemical states possess an artificially increased dimmalgy. Only the total free energy dif-

ference between the end states is physically meaningfulraiegbendent on the chosen definition
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for the alchemical energy function, while the free energyfifer along the coupling parametg&r

as transformation coordinate depends on this definitiortlaunglis not physically meaningful.

2. The Bennett acceptance ratio method

For FEP between states with one reactive subsystem cortfguesach, Bennett showed€]

that the free energy estimate minimizing the statisticalrezan be obtained by iteratively solving

1

Z 1 +expl|B(E — Ey) — C)

no—1
X (B.4)

Z 1 +exp [B(E) — Ey) + C))

n1—-0

for the constant” where the sums run over all,_,;,n,_o being the number of perturbation
samples collected in forward and reverse direction, rasm@he FromC, A F;_,; can be calculated

via

AFy ., =B (mc —In ”HO) (B.5)

Nno—1

The standard deviation of the free energy estimate is giyen b

2

52 _ f[B(E, — Ey— C)°y,, — F[B(E; ; Eo— O]y
no—1 f [ﬁ (El — FEy — C)]o_u

n FI8 (B — Er + O)* L, — FIB (Eo _ B+ O)]s
nisof[B(Eo — B+ C)]y_,

(B.6)

where the overbars denote the arithmetic average, thergpiissaf the averages indicate the sam-
ples collected in forward and reverse direction as for thalmers of samples andf is the Fermi

function
1

" 1+ exp[—fa]
The formalism is extended to comprise the single move FERmek defined by Eqs23)

f [x] (B.7)

and @1) by correcting for the relative volume of the configuratipases that contribute the energy
differences. For the random single-move scheme, thisveledvnfiguration space volumelisi—(l).
The corresponding relative configuration space volumeh@equilibrated single-move scheme is

In g—é Accordingly, Eq. B.5) is modified for the random-single move scheme

Y
AFy 1 =57 (mc B P U —1> (B.8)

No—1 vy
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This expression can be checked for consistency by inse%%irt'gnes as much samples in reverse
direction as in the forward direction into EdB.).
Inserting Eq. B.8) into Eq. B.4) gives after a small rearrangement the iteration formuteeco

sponding to the multi-move FEP scheme defined by EB8). &s

1
% g T BT

(B.9)

1
2 1+ g [exp[8(Er — Ey) + C] dqp)

The free energy difference is then obtained again from Bdp) (@nd the corresponding standard

deviation of the free energy estimate is given by

o _EIB(B - >FH [ B(Er = By — Oy
n0—>1‘1’0 1B (Ey C)]i_u
N f[8(Ey— Ev+CO)° ,—f [5 (Eo — By + C)ﬁ_m

7
nsoV1 B (Ey — Ev+ O)], 0

(B.10)

where the averages are taken over the entire spacgV, of collected state energy difference
samples.

Recently, extended versions of the Bennett acceptance ratiboeh were proposed by two
groups. The method of Maragakis et @8] includes collected data for multiple transformations
sharing a common reference end state in a simultaneous maxentropy estimation of all free
energy differences. The complementary method of Shirtscamebrkers includes all the inter-
mediate steps of a FEP simulation with staging simultangda®btain the maximume-likelihood
estimate of the free energy differenc@5]. Both extensions offer improved results relative to
the original method. It seems likely that these extendedaus can also be applied to the FEP

simulation schemes presented in the present paper withrmmadifications.

Appendix C: Relation between Boltzmann entropy and 8Rmann entropy

In this section, we want to carry on the discussion of thetimigbetween the canonical Boltz-
mann entropy and thei®mann entropy begun in Sez.4 of the main article. By examining
Figure 2b), we can observe th&t and(2 adopt equal values in the extreme limits/&f— 0 and
K — oo and that they differ in the intermediate range in which tla¢esenergy of the occupied

microstate can differ. From comparison of Eg#0)(and @1), it can be seen that = S if the
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FIG. 6. Possible interpretation of the difference between Boltzmann aft&nn entropy as measure
for the range of thermally accessible microstate energies. See text fdedetascription of the system.
left: The differencel’S — T'S is plotted for three different arrangements of the microstates along the coor
dinate as a function of the harmonic potential strengdlitiright: The three different arrangements of the
microstates along the coordinaje Each circle represents a microstate. The colors of the circles are the
same as for the corresponding graphs on the left. In the bottom arrangéstaek), the microstates are
evenly distributed along the coordinate. In the middle arrangement (redinitrostates are all found in

the center of the coordinate range. In the arrangement shown at thgréem), one microstate is found at
the center of the coordinate range while all other microstates are founel mtitimum or maximum of the

coordinate range.

exponential average of the state energy equals the arithenatrage. This condition is only met
in the microcanonical ensemble or a degenerate system thving state energy is also constant,
since generally-3-11n (exp [~ 3FE]) < (E). The difference between Boltzmann entropy E)(
and S1Bmann entropy Eg4() is given by

T (S — S) = (E)+ 57! ln/,oexp [—BE]dq (C.1)

where we wrote the exponential average of Etf) (explicitly as integral. Next, we write the

arithmetic average in the forf) = —3 ' lnexp [ (E)]

T (S _ S) = B 'nexp [~ (E)] + B! ln/pexp ~BE]dq (C.2)
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By exploiting the relationn z — Iny = In % we can write

&\ a1y Jpexp[=BE]dq
T(S-S) =t (C.3)
Finally, we can write EqE.3) as
T(S—S)=p"In xp [-5 (E — (E))]d
(5-8) =6t [ pespl-5(E - (B))da s

= 7" In(exp [-B (E — (E))])

From Eq. C.4), a possible interpretation of the difference between thiizBann entropy and
the SiIBmann entropy could be proposed as a measure of the intadtal over which the state
energy can vary between samples drawn from the equilibriistnilaition, i.e., a measure of the
thermal fluctuations of the state energy. THIES — S) can be expected to be on the ordekgf’.
Alternatively, we could interpret this difference as measof the uncertainty about the present
value of the state energy as opposed to the interpretatitimed®i3mann entropy as uncertainty
in the position of the system in configuration space. Acaaly, the Boltzmann entropy would
measure the uncertainty in all microscopic system parasatehe same time. Here, uncertainty
is used in the same meaning as that used by Jaynes in the $ensenoplete knowledge about
the current state of the syste®9. That is we know the possible microstates, their respectiv
energies and the resulting occupation probability distrdm, but we can not know in before the
exact identity of a microstate sampled from the equilibrdistribution and thus also not the state

energy of the drawn sample.

In the remaining part of this section, a variant of the exargjistem from Sec@.1 of the
main article is used to obtain a qualitative picture of how dlifference between Boltzmann and
Stumann entropy in depends on the energy landscape of a sy$teencoordinatey might be
conceived as a one-dimensional projection of a more congaafiguration space. Consequently
the microstates might be arranged in a way that differs frare\een distribution along. Fig. 6
shows the difference between Boltzmann aid@®@ann entropies for three different arrangements
of the 21 microstates along;. For the arrangement shown on the middle right scheme, there
is no difference between the entropies, because all matessare equivalent. Consequently the
exponential and arithmetic averages of the microstateggrieare equal for any potential strength
and the range of possible energy values is infinitely nariidve linear arrangement in the bottom

right scheme is the same as in S8d. The difference between the entropies is small for low and
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high potential strengths but significantly positive at intediate values ofC. This behavior can
be explained as follows. At low potential strength, the mstates have nearly the same energy so
that the range of possible values of the microstate energgrisnarrow. This results in a small
difference between the entropy measures. At high potesttiahgth, essentially only the central
microstate with the lowest energy is thermally accessibléhat the interval width of accessible
microstate energies is again effectively equal to zero.nédrmediate potential strength, several
microstates of different energy can be populated and tlrezviat width of thermally accessible
microstate energies is non-zero. A more extreme variarfiefihear arrangement is used in the
arrangement shown in the top-right scheme (green). Thegoonding entropy difference shows
a sharper extremum at intermediate values of the potemteaigth. For lower potential strengths,
the microstates have all very similar energies resultirgmarrow interval of thermally accessible
microstate energies and a small difference between thees: At higher potential strengths, the
energies of the outer microstates is so high in relation écetinergy of the central microstate that
the outer microstates are not thermally accessible. Coesdgiiihe central microstate is the only
significantly populated microstate resulting in an intéofahermally accessible energy interval of
effectively zero width. The maximum difference is higheanor the linear arrangement because
all states except the central one are concentrated at trezveed of the coordinate range. A higher
number of microstates at a certain energy level entrogifalors its population. This favoring can
compensate for unfavorably high energies and widen theerahgiicrostate energies effectively
accessible to a system. This mechanism can lead to muchrldgfezences between Boltzmann
and Si3mann entropies than for the example system shown heraglerIsystems, the difference
can reach severakT'.

In conclusion, the qualitative picture of the dependencthefdifference between Boltzmann
and SiImann entropy on the energy landscape of a system supponsaposed interpretation
of this difference as measure of the interval width over \Wltiee microstate energy can vary in an

ensemble.
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