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We present a generalized free energy perturbation theory that is inspired by Monte Carlo techniques and
based on a microstate description of a transformation between two states of a physical system. It is shown
that the present free energy perturbation theory stated by the Zwanzig equation follows as a special case of
our theory. Our method uses a stochastic mapping of the end states that associates a given microstate from
one ensemble with a microstate from the adjacent ensemble according to a probability distribution. In contrast,
previous free energy perturbation methods use a static, deterministic mapping that associates fixed pairs of
microstates from the two ensembles. The advantages of our approach are that end states of differing
configuration space volume can be treated easily also in the case of discrete configuration spaces and that the
method does not require the potentially cumbersome search for an optimal deterministic mapping. The
application of our theory is illustrated by some example problems. We discuss practical applications for
which our findings could be relevant and point out perspectives for further development of the free energy
perturbation theory.

1. Introduction

Free energy is the central quantity of thermodynamics and
thus of outstanding importance in physics, chemistry, and
biology. Free energy differences provide the driving force for
any physical process and ultimately of life. Free energy
calculations have contributed to our understanding of the
reactivity and function of complex systems encountered in
physics, chemistry, and biology and especially in the interesting
problems emerging at their interface. These calculations supple-
ment and guide experiment by modeling details not easily
accessible to experiment. Continuous improvements have been
achieved over the years both in theory and in practical
application of free energy calculation methods in such diverse
fields as biochemistry, nanotechnology, materials research,
pharmacy, fluid phase theory, bioenergetics, and biotechnology.1-8

A problem not worked out so far occurs in free energy
perturbation (FEP) when dealing with transformations between
two systems for which no unequivocal one-to-one mapping of
initial and final microstates exists. The purpose of the present
paper is to derive a universally applicable free energy perturba-
tion theory based on a microscopic description of the system.

Motivating Problem. Let us consider a simple system
consisting of three microstates with equal energy E ) 0. The
Helmholtz free energy difference between an ensemble consist-
ing only of the first microstate and an ensemble consisting of
the remaining microstates two and three is -�-1 ln 2, where
�-1 ) kBT, as can easily be seen from elementary statistical
mechanics. Analogous problems from our own work occur, for
example, in the calculation of pKa values and protonation free
energies for titratable protein residues or protein cofactors.9

Prototypical realizations of the example system are carboxylic
acids, where the first microstate corresponds to the deprotonated
state while the remaining two microstates correspond to the two

possible positions of the proton at either of the two oxygen
atoms of the carboxy group in the protonated state. Such
problems can in general not be solved by simple symmetry
corrections, because the microstates might not be equivalent
from the onset or because they become nonequivalent due to
differing interactions in an anisotropic environment. Equivalent
protonation forms of amino acid residues, for example, lose their
equivalency in the anisotropic protein environment.

Suppose we want to calculate this free energy difference from
a FEP simulation. Traditional FEP is based on the following
equation derived by Zwanzig in 195410

This equation tells us to sample configurations q0 of the initial
ensemble according to its equilibrium probability distribution
F0 and to collect state energy difference samples E1(q1) - E0(q0).
Each of these energy differences describes a forced transition
from a sampled configuration dq0 to one from the final ensemble
dq1. This transition or FEP move can be considered as
perturbation of the system.11 In choosing the term FEP move
we seek to carry on and extend an existing interpretation of the
perturbation as a special kind of Monte Carlo trial move11 or
step.12 As we will show in the Theory section, the Zwanzig
equation implicitly assumes the existence of an unequivocal one-
to-one mapping M of each configuration of the initial ensemble
to exactly one configuration of the final ensemble and vice versa.
More precisely, the mapping is bijective and preserves the
volume of the differential volume elements mapped onto each
other. Due to this one-to-one mapping, the configurations of
each pair q0,q1 can be perceived as one configuration q subject
to different energy functions E0,E1 in the initial and the final
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exp(-�∆F0f1) ) ∫ F0 exp[-�(E1(q1) - E0(q0))] dq0

with q1 ) M(q0), M: q0 f q1 bijective and |dq0| ) |dq1|
(1)
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state. Within this picture, the transition between the initial and
final state can be interpreted as a perturbation or switching of
the energy function.10,11 Accordingly, eq 1 is written in most
cases without indices attached to the configuration q or with
the index 0 for both end states

This perception does, however, not necessarily correspond to
the real physical situation modeled in a free energy simulation.
In fact, the configurations q0,q1 and the systems described by
them can be quite different.12-14 The required one-to-one
mapping is impossible to define in our example system, since
the number of possible configurations differs between initial
and final ensemble. An apparent solution seems to be found in
a random selection of one of the two possible final configura-
tions. It is easily seen, however, that this approach will also
not lead to the correct result, because the calculated energy
difference for each of the two possible FEP moves is zero. Thus,
already with our simple model system we were not able to
accomplish the calculation of the free energy difference in a
FEP simulation with the Zwanzig equation.

Generalized Statement of the Problem and Our Proposed
Solution. A generalized formulation of the problem which this
article attempts to solve is schematically depicted in Figure 1.
The aim is the calculation of the free energy difference between
two states of a system corresponding to two regions of phase

space whose extent can differ. In most cases, the initial and
final states of a transformation will be defined on the basis of
the system configuration, while the range of the momenta is
not restricted. For a classical system all momentum-dependent
terms cancel in this case from free energy differences and can
thus be neglected in their calculation (see Supporting Informa-
tion). Consequently, the calculation can be carried out entirely
in the configuration space of the system which is spanned by
the coordinate axes of all particles residing in the system.

We will derive a novel formalism for FEP calculations which
can be applied to arbitrary transformations in which the initial
and the final states may possess a differing configuration space
volume. The formalism is applicable to systems defined on
discrete or continuous configuration spaces. The Zwanzig
equation10 will be recovered as special case of our formalism.
Our formalism describes the transformation by a statistical
mechanical average over energy differences for microscopic
transitions between the two ensembles of microstates. Inspired
by Monte Carlo methods, these transitions can be interpreted
as special kind of Monte Carlo trial moves termed FEP move
here.

The principal question to be answered by our derivations is,
what is to be done if there are multiple possible mappings of
the end states onto each other and accordingly multiple possible
FEP moves? The derivations will result in three different
simulation schemes. The first simulation scheme uses energy
differences from all possible FEP moves and leads directly to
the desired transformation free energy. The two remaining
simulation schemes use single FEP moves chosen according to
probability distributions. That is, these simulation schemes use
a stochastic mapping of the end states onto each other instead
of a static, deterministic mapping used by previous FEP
methods. The single-move simulation schemes need to be
augmented by a correction term that accounts for the relative
configuration space volume of the end states. As an interesting
side product, our theory offers insights into general statistical
thermodynamics regarding the relation of configurational en-
tropy and volume of the configuration space regions effectively
explored by a system.

Recently, Jarzynski presented an alternative generalization
of the Zwanzig equation named targeted FEP.14 Targeted FEP
uses a deterministic mapping to optimize the overlap11,15 between
the end states resulting in a more efficient simulation (see section
3.2 for an example). This mapping is bijective but not
necessarily volume preserving. That is, the coordinates of one
end state can be mapped to the coordinates of the other end
state by an arbitrary coordinate transformation. Thus, targeted
FEP is also applicable if the configuration space volume of the
end states differs. Targeted FEP has, however, two drawbacks.
First, a suitable mapping has to be found which may be
cumbersome in the general case. Second and more important
for our own applications, the method is not generally applicable
to systems defined on a discrete configuration space. This is
because a bijective mapping can only be defined if the number
of discrete microstates is the same in both ensembles.

In the next section, we will formally derive our novel FEP
formalism. The subsequent section illustrates the theoretical
findings with some example problems. The example section is
followed by a discussion of applications for which we believe
our findings could be of importance and possible future
prospects of the FEP theory opened by our theoretical findings.
We close with a summary of the main findings of this paper
and the conclusions thereof.

Figure 1. Schematic view of the problem to solve. Sought is the free
energy change ∆F0f1 for the transformation of a system from state 0
to state 1 (end states). The plots for the two end states show the
occupation probability distributions and the underlying energy surfaces
in phase space. The transformation describes the traveling of the system
between two regions of phase space with differing extent and energy
landscape. The phase space is spanned by the spatial coordinates and
the momenta of the particles, depicted here exemplary for a single
particle in one spatial dimension. The contour plots at the bottom show
projections of the energy surfaces into the phase space plane (constant
contour interval, darker shade means higher energy). Overlaid are plots
of the probability surfaces and their projections into the phase space
plane. In the projections, only the significantly populated regions of
phase space are shown. Each square on the surfaces represents an
infinitesimal volume element in phase space. The integral over all
volume elements of the phase space regardless of their occupation
probability gives the total phase space Volume Ψ. The phase space
elements with a significant occupation probability are indicated by their
dark shade and bold frame. These elements constitute the thermally
accessible regions of phase space enclosed in the red contours. The
extent of these regions in phase space is termed effectiVe phase space
Volume and denoted by the symbol Ω̃. The example for the plot is
taken from the classical particle in the box models with one or two
harmonic energy wells presented in the example section.

exp(-�∆F0f1) ) ∫ F0 exp[-�(E1(q) - E0(q))] dq
(2)
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2. Theory

2.1. Definitions. Before we begin our derivation, it is
necessary to define some terms and quantities to avoid ambi-
guities and to provide a formal basis for the derivation of our
FEP theory. Mathematically, our physical system is described
by a set of variables defining the momenta p (not to be confused
with the occupation probability p) and a second set of variables
q defining the spatial coordinates. A given set of particular
values for the coordinates q defines a configuration of the
system. The configuration can also include further parameters,
as for example partial charges. A microstate of the system is
defined by particular values for all variables describing the
system, that is by a particular configuration of the system and
particular momenta of all particles of the system. The microstate
is fully described by a particular configuration of the system if
the momenta are not considered explicitly.

The free energy difference ∆F0f1 refers to a transformation
between two states 0 and 1. The initial and final states of a
transformation are often termed end states in free energy
calculations. It is important to notice that in general the initial
and final states are ensembles of microstates of the system.
Sometimes the term macrostate is used to indicate the ensemble
nature of these states. The transformation can be partitioned
into multiple stages, where initial and final state of a stage can
also correspond to a fictitious (but mathematically well-defined)
intermediate state constituting a chimera of the end states.16

These intermediate states can be used to improve the efficiency
of a free energy calculation, as briefly sketched in section B1
of the Supporting Information. The ensembles which constitute
initial and final state encompass subsets of the entire phase or
configuration space Γ, which may or may not overlap. In our
case, initial and final state will be defined on the basis of the
configuration. We denote sets of configurations constituting the
initial ensemble and final ensemble as configuration subspaces
Γ0 and Γ1, respectively. The relation between the total config-
uration space Γ and the configuration subspaces encompassed
by the initial and final states Γ0,Γ1 can be formally defined as

indicating that the union of the initial configuration subspace
and the final configuration subspace is a subset of, or equal to,
the total configuration space of the system. The initial and the
final configuration subspaces may or may not overlap.

When taking the integral of unity over all configurations
constituting a configuration space or configuration subspace, we
obtain its total configuration space volume17

The symbol Ψ is chosen to distinguish the total configuration
space volume from a spatial volume. Analogously, the total
phase space volume would be obtained by integrating over the
momentum variables also. Here, total means that Ψ corresponds
to the entire volume of configuration or phase space theoretically
accessible to the system within the respective configuration
space regardless of the energetics and actual probability
distribution. The total phase or configuration space volume Ψ
is not to be confused with the corresponding effective phase or
configuration space volume actually populated by the system
denoted by Ω̃. The difference between Ψ and Ω̃ is depicted
schematically in Figure 1. Note that the actual effective phase

space volume does not necessarily correspond to a region of
phase space with sharp boundaries, since the occupation
probability density is nonzero throughout the whole phase space
on which the model is defined wherever the energy function
has a finite value. A more theoretical definition of the effective
phase space volume is given below. The DN-dimensional
continuous phase or configuration space volume of a system of
N particles in a D-dimensional spatial region in a Cartesian
coordinate system has units of action [(J s)DN], or units of length
[mDN] (in SI units). See the Supporting Information for an
example calculation of the phase and configuration space
volumes of a system formulated in continuous, Cartesian
coordinates using SI units.

Without loss of generality for the formalism, we will in the
following use a description of the system based on its config-
uration. For a system formulated in a full phase space descrip-
tion, the microstate energy E becomes the Hamiltonian explicitly
accounting for the momenta of the system particles and the
integrations must be performed over the momenta also (see the
Supporting Information for an explicit example calculation). For
classical systems, however, the momentum-dependent part of
the integral constituting the partition function can be separated
and cancels in free energy differences (see for example refs 17
and 18 and the Supporting Information).

2.2. Derivation of the Multimove FEP Equation. We start
our derivation with the expression of the Helmholtz free energy
difference in terms of the configurational partition functions Q0

and Q1 of initial ensemble and final ensemble, respectively

where the integrations are performed over all dq0 and dq1

configurations of the respective configuration subspaces. All the
integrations in the following parts of this article are to be
understood as total integrals over the whole domain on which
the integration variables are defined unless otherwise stated
(explicit example calculations can be found in the Supporting
Information).

The microstate of the system is described by a set of variables.
On the basis of these variables, we partition the system in two
subsystems: the reactive subsystem and the environment sub-
system. The variables with a different range of possible values
in the initial configuration subspace and the final configuration
subspace define the reactive subsystem, whereas the variables
with the same range of possible values in both subspaces define
the environment subsystem. This partitioning is, however, just
a mathematical device to make the calculations more efficient.
The environment subsystem can freely respond to changes in
the reactive subsystem. Accordingly, we can express the total
configuration q of the system as combination of the configura-
tions of these subsystems

where the superscripts e and r indicate environment and reactive
subsystem, respectively. The total configuration space volume
is equal to the product of the total configuration space volumes
of the environment subsystem and the reactive subsystem

Γ ⊇ Γ0 ∪ Γ1 (3)

Ψ ) ∫Γ
1 dq (4)

∆F0f1 ) -�-1 ln
Q1

Q0

) -�-1 ln
∫Γ1

exp[-�E1] dq1

∫Γ0
exp[-�E0] dq0

(5)

q ) {qe, qr} (6)
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The microstate energy E is a function of the configuration of
the environment and of the reactive subsystem. The total state
energy can thus be written as sum of terms of the energy
function depending on the configuration of both subsystems
Er(qe,qr) and terms depending only on that of the environment
subsystem Ee(qe)

where the subscript i ) {0,1} indicates the initial or final state,
respectively. The term Ee(qe) carries no subscript because it is
identical for the initial and final state. In the following, the
explicit statement of the dependencies in the parentheses will
be omitted to keep the notation concise.

Partitioning the energy function and the configuration in the
numerator of eq 5 according to this concept transforms eq 5
into

where the integrations are again performed over all dq0 ) dqe

dq0
r and dq1 ) dqe dq1

r configurations of the initial and final
configuration subspaces, expressed now in terms of the con-
figurations of the environment and the reactive subsystem. The
next step constitutes the major difference from the derivation
of Zwanzig.10 We account for multiple possible transitions of a
microstate from the initial ensemble to a microstate from the
final ensemble by multiplying the integrand in the enumerator
of eq 9 by unity expressed as

and obtain

Before we proceed with our derivation, it seems worthwhile
commenting on why the right-hand side of eq 10 is equal to 1.
The product of the exponential energy terms in eq 10 is equal
to 1 for each configuration q0

r of the reactive subsystem of the
initial state. When taking the integral of unity over all
configurations of the reactive subsystem, we obtain the total
configuration space volume Ψ0

r ) ∫1 dq0
r theoretically accessible

to the reactive subsystem within the configuration subspace of
the initial state. To obtain unity on the left-hand side of eq 10,
we thus have to divide the right-hand side by Ψ0

r . In the case
of a discrete configuration space, this volume becomes simply
the total number of possible configurations of the reactive
subsystem within the initial configuration subspace.

In eq 11 the canonical occupation probability density of a
configuration in the initial configuration subspace given by

can be recognized. We thus obtain from eq 11

Equation 13 shows the benefit of partitioning the configuration
into reactive and environment subsystem for a simulation.
During the calculation of the energy difference, only energy
terms depending on the configuration of the reactive subsystem
need to be computed while terms depending solely on the
configuration of the environment subsystem cancel from the
difference. By symmetry, the corresponding equation for
the reverse transformation is simply obtained by exchanging
source and target indices. Equation 13 can be written in a more
compact form as

where 〈 · · · 〉0 denotes the ensemble average over the initial state.
A special case occurs if the reactive subsystem has just one

possible configuration in each end state. In this case, the
variables constituting q0

r and q1
r have only one possible value

specific to either end state; i.e., they become constants. The
dimensionality of the configuration subspaces is then reduced
relative to that of the entire configuration space, because the
constants qr are omitted from the integration in eq 4. Conse-
quently, the total configuration space volume of the reactive
subsystem Ψr is unity for both end states. The total volumes of
initial and final configuration subspaces Ψ0 ) ΨeΨ0

r and Ψ1 )
ΨeΨ1

r are equal in this special case. Furthermore, the mapping
of initial to final configurations M: q0 f q1 is, in this special
case, unequivocally determined by changing the value of qr to
the only possible value in the adjacent end state while keeping
the configuration of the environment subsystem qe

This mapping is bijective and volume preserving; i.e., there is
a one-to-one correspondence of each differential volume element
dq0 to exactly one differential volume element dq1. The size of
the differential volume elements dq0 and dq1 and the total
volume of the configuration subspaces mapped onto each other
is equal. The derived one-to-one mapping can be perceived as
defining a unique FEP move which is defined by changing the
configuration of the reactive subsystem qr from the only set of
values allowed in the initial ensemble to the respective only
set of values allowed in the final ensemble. This FEP move
can be described as a switching of the energy function,11 where
the microstate energies Ei specific to the end states i ) {0,1}
would be conceived as two different energy functions whose
range of validity is defined by the configuration of the reactive

Ψ ) ΨeΨr (7)

Ei ) Ee(qe) + Ei
r(qe, qr) (8)

∆F0f1 ) -�-1 ln
∫ exp[-�Ee] exp[-�E1

r ] dqe dq1
r

∫ exp[-�E0] dq0

(9)

1 ) 1

Ψ0
r ∫ exp[-�(Ee - Ee)] exp[-�(E0

r - E0
r )] dq0

r

(10)

∆F0f1 ) -�-1 ln[ ∫ exp[-�(E1
r - E0

r + Ee + E0
r )] dqe dq0

r dq1
r

Ψ0
r ∫ exp[-�E0] dq0

]
(11)

F0 )
exp[-�(Ee + E0

r )]

∫ exp[-�E0] dq0

(12)

∆F0f1 ) -�-1 ln[ 1

Ψ0
r ∫ F0 exp[-�(E1

r - E0
r )] dqe dq0

r dq1
r]
(13)

exp(-�∆F0f1) )
1

Ψ0
r
〈∫ exp[-�(E1

r - E0
r )] dq1

r 〉0

(14)

M: qeq0
r f qeq1

r |q0
r ,q1

r const (15)
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subsystem (see setup A of Bennett’s model system in section
3.2 for an example). Consequently, the familiar FEP equation
as given in ref 10 follows as a special case of eq 13 in the case
of just one possible configuration of the reactive subsystem

where the configuration qe is often written as q or q0 as in eq
2, while qr is perceived as a parameter that defines the initial
or final state and the corresponding energy function. A volume
preserving, bijective (one-to-one) mapping M:q0 f q1 of each
volume element in the initial configuration subspace to a volume
element in the final configuration subspace can also be defined
if the total configuration space volume (see Figure 1) of the
reactive subsystem is equal for the initial and the final state.
However, the Zwanzig equation makes no statement on how to
define this mappingsit does not need to correspond to a
mapping in real physical space.12-14 Such a defined mapping
leads, for example, from setup B to setup A of Bennett’s model
transformation presented in section 3.2. These considerations
make it clear that the Zwanzig equation10 implicitly assumes a
system in which an unequivocal, volume preserving, bijective
mapping of initial and final configuration subspaces exists. This
prerequisite limits the direct applicability of the Zwanzig
equation to transformations between end states of equal total
configuration space volume.

2.3. Simulations Conducted with Single FEP Moves.
Equation 13 has the disadvantage that at each configuration
sampled from the equilibrium distribution of the initial state
one would have to evaluate the integral ∫exp[-�(E1

r - E0
r )]

dq1
r , which might be difficult or impossible especially in the

case of a continuous configuration space. In the case of a discrete
configuration space, the evaluation of this integral simplifies to
collecting as many state energy samples E1 - E0 as there
are configurations of the reactive subsystem in the final state.
To circumvent this difficulty, we can simplify eq 13 to use only
one perturbation energy sample per data collection step and
correct afterward for the deviation from the true free energy
difference. Such a form of eq 13 is more practical to use, but
requires a decision on how to choose the FEP move to be
executed and an appropriate correction. Two possibilities to
choose among the FEP moves are explored here. The choice
can be made randomly as pursued in the next section or based
on the equilibrium distribution of the final state as explored in
the subsequent section.

2.3.1. Perform Random Single FEP MoWes. To obtain a
simpler expression as eq 13, we randomly select one configu-
ration of the reactive subsystem q1

r at the final state instead of
realizing all possible switching moves

This equation corresponds to weighting all switching moves by
the same uniform probability 1/Ψ1

r . In doing so, we do not grant
the system time to relax toward equilibrium. Hence, this process
can be described as an infinitely fast switching from initial to
final state. Note that eq 17 reduces to the Zwanzig equation
(eq 16) if the total configuration space volume of the reactive

subsystem is unity in the initial and final states. The difference
between the true free energy difference eq 5 and eq 17 is

using eqs 8 and 12 we obtain

Since there are no terms depending on q0
r remaining, integrating

over all dq0
r gives the total configuration space volume of the

reactive subsystem in the initial state Ψ0
r

Finally, we obtain the deviation of our free energy estimate from
the true free energy difference as

This correction term can often easily be calculated analytically
especially in the case of a discrete configuration space. Thus,
we can use eqs 17 and 22 to obtain the free energy difference
from

2.3.2. Perform Single FEP MoWes to an Equilibrated
System. In this section, the single FEP move is performed from
the configuration sampled from the equilibrium distribution of
the initial state to a configuration sampled from the equilibrium
distribution of the final state. Thus, each energy difference in
the exponential average of this simulation scheme corresponds
to an infinitely slow transition between the corresponding initial
and final configurations. That is, the system has enough time
to relax to equilibrium during the transition. The free energy
estimate obtained from this simulation scheme is described by

The integral is taken over all possible pairs of microstates from
the initial and final ensemble, where in contrast to the random
single move defined by eq 17, the configurations from both

exp(-�∆F0f1) ) ∫ F0 exp[-�(E1
r (qe, q1

r ) -

E0
r (qe, q0

r ))] dqe|q0
r ,q1

r const (16)

∆F̃0f1
rand ) -�-1 ln[ 1

Ψ1
r ∫ F0 exp[-�(E1

r - E0
r )] dqe dq0

r dq1
r]
(17)

�∆∆F0f1
rand ) �(∆F0f1 - ∆F̃0f1

rand)

) -ln
Q1

Q0
+ ln ∫ F0

Ψ1
r

exp[-�(E1
r - E0

r )] dqe dq1
r dq0

r

(18)

�∆∆F0f1
rand ) -ln

Q1

Q0
+ ln ∫ exp[-�E0]

Q0

1

Ψ1
r

×

exp[-�(E1 - E0)] dqe dq0
r dq1

r (19)

�∆∆F0f1
rand ) -ln Q1 + ln ∫ 1

Ψ1
r

exp[-�E1] dqe dq0
r dq1

r

(20)

�∆∆F0f1
rand ) -ln Q1 + ln ∫ exp[-�E1] dqe dq1

r + ln
Ψ0

r

Ψ1
r

(21)

∆∆F0f1
rand ) -�-1 ln

Ψ1
r

Ψ0
r

(22)

∆F0f1 ) ∆F̃0f1
rand + ∆∆F0f1

rand (23)

∆F̃0f1
equi ) -�-1 ln ∫ F0F1 exp[-�(E1 - E0)] dq0 dq1

(24)
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ensembles are weighted by their equilibrium occupation prob-
ability. In principle, one could simulate actual trajectories for
very slow transitions between initial and final state, but this is
not required. In contrast to the Jarzynski equation,19 eq 24
averages over state energy differences between the initial and
final microstate of each transition instead of the amounts of work
done along actual trajectories. Since the energy differences in
eq 24 make no reference to actual trajectories connecting the
microstates q0 and q1, there are different equivalent ways to
implement the simulation scheme in practice. One could
randomly select a microstate from the final ensemble as
described in the previous section and equilibrate the system
afterward. Alternatively, one could run independent equilibrium
simulations of both end states in parallel and take microstate
energy differences in certain intervals chosen such as to ensure
uncorrelated samples.

The difference between the true free energy difference eq 5
and eq 24 is

and using eqs 8 and 12 we obtain

which can be further simplified to

Again, there is no term depending on the initial configuration
q0 left, so that integrating over all dq0 gives the total config-
uration space volume of the whole system in the initial state
Ψ0. Writing ∫p1 exp[-�E1] dq1 as ensemble average
(exp[-�E1])1, we obtain

At first sight, this expression looks very discouraging, since we
want to use the FEP simulation exactly because the partition
function is difficult, if not impossible, to calculate for a large
system. But when looking at the equation in more detail, we
see something familiar. The first two terms on the right-hand
side are very similar to the definition of the total configurational
entropy of the final ensemble -�TS1 ) -ln Q1 - (�E1)1, with
the average state energy exchanged by the exponential average
of the state energy. Thus, we can define a modified configura-
tional entropy of the final ensemble as

A possible interpretation of this quantity is examined in more
detail in the following two sections. The last term in eq 28 is

the free energy contribution of the ideal, maximum reachable
configurational entropy of the system in the initial state. This
maximum configurational entropy would be reached if all
microstates had equal energy (see section 2.4). Using the
definition of the modified entropy S̃, eq 28 can be written as

We define the effective configuration space volume

and rewrite eq 29 as

Using eq 30, the free energy difference ∆F̃0f1 is given by

The correction term eq 30 involves the effective configuration
space volume of the final state Ω̃1. The interpretation of this
quantity as volume of the thermally accessible portions of the
total configuration space volume of the final state is addressed
in detail in the following sections. In the remainder of this
section, we will be concerned with the derivation of an
expression for the calculation of this quantity.

A possibility for the calculation of Ω̃ follows from the
expressions for the free energy difference ∆F0f1 derived for
our two single-move simulation schemes. Combining the right-
hand sides of eqs 31 and 23 and solving for Ω̃ gives

Direct use of this equation results in a large statistical uncertainty
of the obtained estimate of Ω̃1. A better expression can be found
by noticing that the left-hand side is independent of the initial
state 0 used in computing the averages on the right-hand side.
The statistical uncertainty of free energy estimates computed
with free energy perturbation theory is known to be minimized
by maximizing the similarity or overlap of the probability
distributions of the initial and final state.11,15,20 Thus, one would
expect to maximize the efficiency of the calculation by using
the same state as initial and final state in the calculation of the
averages F̃0f1

rand and F̃0f1
equi

where ∆F̃1′f1
rand is equal to 0. Expanding ∆F̃1′f1

equi according to eq
24 and using exp[ln x] ) x gives

�∆∆F0f1
equi ) �(∆F0f1 - ∆F̃0f1

equi )

) -ln
Q1

Q0
+ ln ∫ F0F1 exp[-�(E1 - E0)] dq0 dq1

(25)

�∆∆F0f1
equi ) -ln

Q1

Q0
+ ln ∫ exp[-�E0]

Q0
F1 ×

exp[-�(E1 - E0)] dq0 dq1 (26)

�∆∆F0f1
equi ) -ln Q1 + ln ∫ F1 exp[-�E1] dq0 dq1

(27)

�∆∆F0f1
equi ) -ln Q1 + ln〈exp[-�E1]〉1 + ln Ψ0

(28)

-�1TS̃1)
def

- ln Q1 - (-ln〈exp[-�E1]〉1)

�∆∆F0f1
equi ) -�TS̃1 + ln Ψ0 (29)

Ω̃def ) exp[�TS̃1]

�∆∆F0f1
equi ) -ln

Ω̃1

Ψ0
(30)

∆F0f1 ) ∆F̃0f1
equi + ∆∆F0f1

equi (31)

Ω̃1

Ψ1
) exp[-�(∆F̃0f1

rand - ∆F̃0f1
equi )] (32)

Ω̃1

Ψ1
) exp[-�(∆F̃1′f1

rand - ∆F̃1′f1
equi )] (33)

Ω̃1

Ψ1
) 1

∫ F′1F1 exp[-�(E'1 - E1)] dq′1 dq1

(34)

512 J. Phys. Chem. B, Vol. 115, No. 3, 2011 Ullmann and Ullmann



The integration on the right-hand side can be separated into
two independent integrals

This equation results in a reduced statistical uncertainty of the
calculated Ω̃1 as expected. Equation 35 formally allows one to
calculate the effective configuration space volume from a set
of N uncorrelated samples drawn from an equilibrium simulation
as

The estimate of Ω̃1 obtained from such a simulation still
converges slowly to the correct absolute value but does so
significantly faster than an estimate based on eq 32. Besides
the more favorable intrinsic convergence properties, also the
computation of ∆F̃0f1

rand is not required when using eq 36, resulting
in an extra saving of computation time.

2.4. Configurational Entropy and the Effective Configu-
ration Space Volume. In this section, we want to highlight
one of the numerous possible interpretations of the quantity
entropy, which will enable us to derive an interpretation of the
correction terms derived in sections 2.3.1 and 2.3.2. The
meaning of the correction terms is examined in detail in section
2.5.

The configurational part of the Boltzmann entropy is calcu-
lated from

The meaning of the quantity entropy can be interpreted in
various different ways. Two of them could be useful here. One
follows from comparison with the ideal, maximum achievable
configurational entropy of the system, which is also encountered
in the microcanonical ensemble

where Ω is the partition function of a microcanonical ensemble.
Ω is often interpreted as the volume of the thermally accessible
configuration space, hence also termed effective configuration
space volume.

The second possible interpretation of the entropy follows from
rearranging eq 37

Writing this as

we can interpret the entropy as the mean deviation of the state
energy from the absolute free energy. In section 2.3.2, a quantity
similar to the configurational entropy emerged from our
derivation, in which the arithmetic ensemble average of the state
energy is substituted with the exponential ensemble average

This modified entropy can be rearranged to be written in a form
similar to the Boltzmann entropy in eq 37

from which we finally obtain

Interestingly, the form of this result shows analogy to the
corresponding equation for the Boltzmann entropy eq 37. A
practical advantage of this entropy formulation over eq 37 is
that it does not suffer numerical problems in the case of zero
probabilities. By analogy to eq 38, we can write now a measure
of the effective configuration space volume

This result has been obtained before by Sussmann in a quantum
mechanical context as a measure of uncertainty about the
position of a particle in phase space.21 This interpretation is
absolutely analogous to that as effective configuration or phase
space volume in the present context. The difference is that a
quantum mechanical system can often even be described by a
blend of different microstates at a single point in time, while
the uncertainty about the position of the system in phase space
in the classical case arises from occupation of different
microstates at different points in time. A similar interpretation
of entropy, as measure of the incompleteness of knowledge
about the current microstate of the system, was already provided
by the seminal works of Edwin Jaynes, which established a
formulation of statistical mechanics in terms of information
theory.22 See ref 28 for a review on the relation of entropy and
information in physics. We note that the functional form of the
Sussmann entropy eq 43 is formally identical to that of the
information theoretic Rényi entropy of order two.24

Regarding the relation of Boltzmann entropy and Sussmann
entropy, we can see from comparison of eqs 40 and 41 that the
two entropy measures are equal if the exponential average of
the state energy equals its arithmetic average. This condition is
met in the microcanonical ensemble or in a degenerate system
in which all configurations have the same state energy. From
the considerations in this section, it is not yet entirely clear to
us if there is more physical meaning hidden within the difference
of Boltzmann and Sussmann entropy than the obvious math-

Ω̃1

Ψ1
) 1

(∫ F′1 exp[-�E'1] dq′1)(∫ F1 exp[�E1] dq1)

(35)

Ω̃1 )
Ψ1N

2

∑
i

N

exp[-�Ei] ∑
j

N

exp[�Ej]

(36)

-TS ) �-1 ∫ F ln F dq (37)

-TS ) -�-1 ln Ω (38)

-TS ) �-1 ∫ F ln F dq

) �-1 ∫ F ln
exp[-�E]

Q
dq

) �-1(-ln Q + ∫ F ln exp[-�E] dq)

) �-1(-ln Q - ∫ F[�E] dq)

(39)

-TS ) -�-1 ln Q - 〈E〉 (40)

-TS̃ ) -�-1 ln Q + �-1 ln〈exp[-�E]〉 (41)

-TS̃ ) -�-1 ln Q + �-1 ln〈exp[-�E]〉
) -�-1 ln Q + �-1 ln ∫ F exp[-�E] dq

) -�-1 ln ∫ Fexp[-�E]
Q

dq

(42)

-TS̃ ) �-1 ln ∫ F2 dq (43)

Ω̃ ) exp[�TS̃] ) 1

∫ F2 dq
(44)

Generalized Free Energy Perturbation Theory J. Phys. Chem. B, Vol. 115, No. 3, 2011 513



ematical differences tell. Since this question is outside the
immediate scope of this paper, we will not pursue it further
here. The interested reader is referred to section C of the
Supporting Information for a more elaborate analysis of this
question. Nevertheless, we can deduce a possible interpretation
of the Sussmann entropy as effective configuration space volume
occupied by a system in a specific macrostate, i.e., an ensemble
of microstates using eq 44. This interpretation is fortified in
the next section by an analogy argument regarding the meaning
of the derived correction terms eqs 22 and 30. The meaning of
the effective configuration space volume and its dependence
on the shape of the state energy landscape is illustrated by a
simple example system at the beginning of the section Examples
and by a slightly more complicated example in the Supporting
Information.

2.5. Meaning of the Correction Terms for Simulations
Conducted with Single FEP Moves. For the random single-
move scheme outlined in section 2.3.1, the correction term eq
22 describes the relative total volume of the initial and final
configuration subspace. The interpretation of the correction term
for the single FEP move scheme with selection of the target
state from the equilibrium distribution eq 30 is analogous. We
restate eqs 22 and 30 here to emphasize the analogy. The
correction term for the equilibrated single-move scheme is

The configurational entropy can be interpreted as measure for
the effective volume of the configuration space (see section 2.4).
In the case of a discrete configuration space, Ω̃ is the effective
number of configurations thermally accessible to the system.
The correction term for the random single-move scheme reads

where we multiplied the numerator and the denominator of the
fraction in eq 22 with Ψe and substituted the products of the
total configuration space volumes of the two subsystem with
the total configuration space volume of the whole system (see
eq 7). Comparing eqs 45 and 46, one can easily spot the analogy
between Ω̃1 and Ψ1. Since we collected only one state energy
difference per sampling step corresponding to one transition
instead of integrating over all possible FEP moves as prescribed
by eq 13, we have to correct for the actual number of possible

transitions. The ratio of the numbers of possible forward and
backward transitions between initial and final state is given by
the relative configuration space volumes appearing in the
correction terms. The numbers of possible transitions is
determined by the numbers of configurations in each configu-
ration subspace which are accessible as initial or final config-
uration of the perturbation. The accessibility of a configuration
as final point of the perturbation is determined by the probability
of selecting a configuration in the respective single-move FEP
scheme. For the random single-move scheme (eq 23), there is
a uniform probability for all configurations of the final config-
uration subspace that is given by Ψ1

-1 (or by (Ψ1
r )-1 if the

variables are subdivided into environment and reactive sub-
system). For the equilibrated single-move FEP scheme (eq 31)
the probability to select a configuration as the final point of the
perturbation is given by its equilibrium probability.

3. Examples

This section has the purpose to illustrate the theory derived
in the previous section and its application with the aid of some
model systems. These model systems are simple enough to be
analytically explored on a piece of paper but sufficiently
complex to underline the importance of our theoretical findings.

3.1. Effective Configuration Space Volume Occupied by
a Classical Particle in a Box with a Discretized Harmonic
Potential. Consider a model system consisting of 21 discrete
microstates in a one-dimensional box evenly distributed along
the coordinate 0 e q e 1. The energy of the microstate i is
given by the harmonic potential

The potential is symmetric around the center of the length
interval at q ) 0.5 and its strength is defined by the constant
K. The energy of the microstates is evaluated at the discrete
points {q1,q2,...,q21} ) {0,1/20,...,1}.

The population probability of the microstates and the effective
configuration space volume Ω̃ are plotted in Figure 2. For
comparison, the plot also contains the analogous quantity Ω
derived from the Boltzmann entropy for this model system.
Figure 2b shows the effect of K on the effective configuration
space volume Ω̃. If the energy landscape is very flat (K f 0),
all microstates are thermally accessible and so Ω̃ ) 21. If on
the other hand the harmonic potential is very steep, the particle
is trapped at the center of the box and will essentially never
populate a state other than the central one, which is reflected
by the convergence of Ω̃ to 1 for Kf ∞. In the extreme limits,

Figure 2. Occupation probability and effective (thermally accessible) configuration space volume available to a classical particle in a one-dimensional
box with a discretized harmonic potential. See text for a detailed description of the system. (a) The occupation probability distribution of the model
system is plotted for its 21 microstates using three different harmonic potentials of different strength determined by the parameter K. (b) The
effective configuration space volume Ω̃ ) exp[�TS̃] is plotted as a function of K (solid curve). For comparison, the plot contains also Ω ) exp[�TS]
(dashed curve).

∆∆F0f1
equi ) -�-1 ln

Ω̃1

Ψ0
(45)

∆∆F0f1
rand ) -�-1 ln

Ψ1

Ψ0
(46)

Ei ) K(0.5 - qi)
2 (47)
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the meaning of Ω̃ is thus easily understandable. In the
intermediate regime, however, fractional values of Ω̃ can occur.
These fractional values of Ω̃ in case of discrete microstates can
be understood considering eq 44. One realizes that Ω̃ ) 1/(∫p2

dq) is the inverse integral of the squared occupation probability
carried out over the whole configuration space. The integration
can be visualized as summation of the squares of the microstate
occupation probabilities p depicted for our example system by
the bars in Figure 2a. The interpretation of the integral ∫p2 dq
is straightforwardsit is the mean probability to find the system
in the same microstate when comparing two uncorrelated
samples picked from the ensemble.

3.2. Bennett’s Model Transformation. The second example
that we want to present here is a model transformation taken
from an article of Charles Bennett.11 In this article, Bennett
introduced his acceptance ratio method which allows to extract
the most probable value of the free energy difference from a
given set of FEP samples. This method can be used to minimize
the statistical error of the free energy estimate obtained from a
FEP simulation.11,25 An outline of the method in the context of
our formalism is given in section B2 of the Supporting
Information. We will not make use of the method in this paper,
but we wish to use the model transformation proposed by

Bennett as an example for the calculation of the transformation
free energy from the different simulation schemes derived in
the theory section.

The system consists of an ensemble of 23 microstates in the
initial state and an ensemble of 23 microstates in the final state.
The microstate energy surfaces of the initial and final state are
plotted in Figure 3 along with the resulting occupation prob-
ability distributions. This example system has the nice property
that it can be formulated in two equivalent ways: one in which
the reactive subsystem has just one possible configuration in
the initial and final states (setup A) and one in which the reactive
subsystem has multiple possible configurations in both states
(setup B). In setup A shown in Figure 3c, the system consists
of an environment subsystem with 23 possible configurations
and a reactive subsystem with 2 possible configurations where
occupation of configuration 1 defines the initial state and
occupation of configuration 2 defines the final state. In setup
A, the energy functions of the initial and final state are given
by

Figure 3. Bennett’s model system.11 The system can be set up in two different, yet fully equivalent, ways. The setups exemplify the consequences
of a reactive subsystem with just one or multiple possible configurations in the initial and final state for the outcome of FEP simulations performed
in different ways. See the text for a detailed description of the system. (a) The green solid and the red dashed profiles show the energies of the 23
microstates of the initial state and the final state, respectively. (b) The green filled columns show the occupation probabilities of the 23 microstates
of the initial state while the red hatched columns show those of the final state. (c) Setup A: An unequivocal one-to-one mapping of the initial and
final configurations exists, making the application of the Zwanzig equation possible. (d) Setup B: There are multiple possibilities to define a one-
to-one mapping of the initial and final configurations. Mapping the configurations in the order in which they are numbered in the figure leads to
setup A. In (c) and (d) the configurations are symbolized by the rectangles with the numbering inscribed.

E0 ) Ei
intr; E1 ) Ei

intr + Wi (48)
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Each configuration i of the environment subsystem contributes
a specific energy Ei

intr to the total energy of the system, which
is equal in the initial and final state. This energy contribution
is equal to the energy of the corresponding microstate from the
initial ensemble as depicted in Figure 3a. The switching of the
energy function from state 0 to state 1 is realized in setup A by
an interaction of configuration 2 of the reactive subsystem with
the environment subsystem. The reactive subsystem does not
interact with the environment subsystem if it adopts configu-
ration 1. The magnitude of the interaction energy Wi is specific
to the configuration i of the environment subsystem and equal
to the respective microstate energy difference between the initial
and final states given for each of the 23 microstates in the
appendix of ref 11 (see Figure 3a). In setup B, the energy of
the system is given by the energy of each of the 23 configura-
tions in initial or final ensemble given in the appendix of ref
11 (see Figure 3a).

The two possible setups of the system are ideally suited to
illustrate the mapping between the configuration subspaces of
the end states. In setup A, there is an unequivocal one-to-one
mapping of each configuration from the initial state to exactly
one configuration of the final state and vice versa. The mapping
M: qeq0

r f qeq1
r is unequivocal because there is only one

configuration of the reactive subsystem qr for each of the end
states. Changing the configuration of the reactive subsystem
constitutes the unique switching move between the initial and
final configurations derived in section 2.2 as prerequisite for
the applicability of the Zwanzig equation, eq 1. Picking up the
original description of FEP by Zwanzig,10 the configuration of
the reactive subsystem would be interpreted as control parameter
which perturbs the energy function, while the configuration of
the environment subsystem would be perceived as the config-
uration q appearing in eq 1. The switching move can then be
interpreted as changing the energy function, while keeping the
configuration of the system as described by Bennett.11 In contrast
to the situation in setup A, there is no unequivocal one-to-one
mapping of the initial and final configurations in setup B,
because there are multiple configurations of the reactive
subsystem at each end state, leading to multiple possible FEP
moves between the initial and final state. However, since the
number of configurations (the total configuration space volume)
is the same in the initial and final state, it is possible to define
a one-to-one mapping of the initial and final configurations by
forming pairs of configurations from the initial and final state.
One of the possible one-to-one mappings can be chosen to make
the application of the Zwanzig equation possible.13 In our
example, the configurations of setup B are simply paired in the
order in which they are listed (1 is mapped to 24, 2 to 25, ...),
leading back to setup A, which is the original arrangement given
by Bennett.11,26

Table 1 shows analytical results of FEP calculations per-
formed according to the different schemes developed in section
2 and compares them to the exact free energy difference obtained
from eq 5. The multimove FEP formula given by eq 13 demands
collecting state energy difference samples for all possible FEP
moves and leads to the correct results with both setups.
Simulations performed with single FEP moves without the
appropriate correction term do not always lead to correct results.
A simulation performed with random single FEP moves leads
to the correct results without the correction term for both, setup
A and B. Why this is the case becomes clear upon examination
of the correction term corresponding to this simulation scheme
given by eq 22. The correction term adopts a value of zero for
the two setups, because the number of theoretically possible

configurations of the reactive subsystem Ψr is equal in the initial
and final states for both setups. In case of a simulation with
single FEP moves selected according to the equilibrium prob-
ability distribution, the situation is different. Deviations arise
for both setups without the correction term given by eq 30. It
can be observed that the correction term for simulations
conducted in forward direction 0 f 1 differs from that for
simulations conducted in the reverse direction 1f 0. The reason
for this asymmetry is the different effective configuration space
volume populated by the system in the initial and final state as
can be seen from eq 30 and Figure 3b. One can see that the
deviations from the exact result obtained with this simulation
scheme can be fully corrected for by the appropriate correction
term eq 30.

3.3. Relative Binding Free Energy from Alchemical FEP.
In this model example, we go one step further and examine a
system with a differing number of reactive subsystem configura-
tions at the two end states. The example is adopted from an
application of FEP simulations frequently encountered in
computational drug design pioneered by Tembe and McCam-
mon.27

The aim is to calculate the relative binding free energy of
two ligands to a receptor. For simplicity, we assume that the
chemical potential of both ligands in solution is equal, so that
the task reduces to the calculation of the free energy change
upon exchanging ligand A with ligand B in the binding site.
The model system setup for the relative ligand binding free
energy example, as depicted in Figure 4, consists of a receptor
with the ligand binding site and a pH-titratable group. The
titratable group can adopt two proton binding forms (bound or
unbound, one of which is charged) and two rotamers each
oriented toward one of the two niches of the ligand binding
site. The ligands A and B bind exclusively to the two distinct
but overlapping niches of the ligand binding site (i.e., only one

TABLE 1: Results from Perfect FEP Simulations at Setup
A and Setup B of Bennett’s Model Systema

free energy difference (kcal/mol)

forward -reverse mean difference

Setup A
F0f1 exact/multimove 14.37791 14.37791 14.37791 0
F̃0f1

rand uncorrected 14.37791 14.37791 14.37791 0
deviation 0 0 0
corrected 14.37791 14.37791 14.37791 0
deviation 0 0 0

F̃0f1
equi uncorrected 15.17150 13.47887 14.32519 1.69262

deviation 0.79359 -0.89904 -0.05272
corrected 14.37791 14.37791 14.37791 0
deviation 0 0 0

Setup B
F̃0f1

rand uncorrected 14.37791 14.37791 14.37791 0
deviation 0 0 0
corrected 14.37791 14.37791 14.37791 0
deviation 0 0 0

F̃0f1
equi uncorrected 14.92590 13.72447 14.32519 1.201425

deviation 0.65343 -0.54799 -0.05272
corrected 14.37791 14.37791 14.37791 0
deviation 0 0 0

a The data is calculated analytically using eqs 17 and 23 for the
uncorrected and corrected F̃0f1

rand and eqs 24 and 31 for the
uncorrected and corrected F̃0f1

equi . The results are checked to be
exactly reproducible in actual simulations within statistical error.
The calculated values are compared to the exact statistical
mechanics result F0f1 calculated from eq 5. The exact values are
identical to those calculated from the multimove FEP formula eq
13.
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of them at a time) and interact favorably with the charged form
of the titratable site. The flexibility of the ligands is treated by
considering three rotamers of each dihedral angle. Since ligand
A possesses two rotatable bonds and ligand B possesses three
rotatable bonds, this discretization results in nine rotameric forms
of ligand A and 27 rotameric forms of ligand B. Ligand B can
be accommodated by the binding site in all of its rotameric
forms, while ligand A can only be adopted in one of its rotameric
forms by its binding niche, but is bound more tightly and
interacts also more favorably with the charged form of the
titratable site. The state energy of this model is given by

with the energy contributions

where i is the configuration of ligand A or B in the ligand
binding site and j is the configuration occupied by the titratable
site. The first i ) {1, .., 9} configurations of the binding site
are the rotameric forms of ligand A, while the remaining i )
{10, .., 36} configurations of the binding site correspond to the
rotameric forms of ligand B. The titratable site is oriented toward
the binding niche of ligand A in the configurations j ) {1,3}
and oriented toward the binding niche of ligand B when adopting
the configurations j ) {2,4}.

The results of FEP simulations conducted according to our
three different simulation schemes are given in Table 2. It can
be seen that all simulation schemes yield the correct result. FEP
simulations employing a random single-move scheme (eq 17)
or a single-move scheme according to the target ensemble
equilibrium distribution (eq 24) without the appropriate cor-
rection term lead to severe deviations from the true relative
binding free energy. Clearly, the observed deviations in the
uncorrected FEP simulations conducted with single moves
originate from the failure to account properly for the relative
statistical weight of the ensembles. The appropriate correction
terms derived in section 2 fully correct for the deviations. The

importance of such contributions to the free energy of binding
has already been well recognized in the literature8,28,29 and is
further underlined by our example. We show that application
of FEP with a single move per data collection point chosen
randomly or according to target state equilibrium distribution
without proper correction terms can lead to quantitatively and
even qualitatively wrong results.

3.4. Relative Free Energy of Two Classical Particle in the
Box Models with a Single-Well or a Double-Well Harmonic
Potential in Continuous Coordinates. This model example
demonstrates the application of our formalism to a system
formulated in nondimensionless, continuous coordinates. The
model system consists of a particle of mass m in a one-
dimensional box of length L. The spatial coordinate q is defined
on the interval -L/2 e q e L/2 and constitutes the reactive
subsystem. The momentum p must not be confused with the
occupation probability p. The range of values available to the
momentum variable is not restricted at either end state and does
consequently not differ among them. Thus, the momentum
constitutes the environment subsystem. The potential energy is
given by a single-well or double-well harmonic potential denoted
by sw or dw, respectively. The Hamiltonian of the system is
given by

where the kinetic energy is given by the first terms on the right-
hand sides, whereas the potential energy is given by the second
terms on the right-hand sides. The strength of the harmonic
potential is determined by the angular frequency ω of the
oscillator. The single-well model is equivalent to a (confined)
classical harmonic oscillator.

In a classical formulation, as adopted here, the Hamiltonian
can be separated into the momentum-dependent and configu-
ration-dependent terms which are mutually independent. This
property, together with the unrestricted range of values available
to the two end states, has the consequence that all momentum-

Figure 4. Model system setup for the relative ligand binding free
energy example consists of a receptor with the ligand binding site and
a pH-titratable group. The transformation is defined by the exchange
of ligand A with ligand B in the binding site. See text for detailed
explanation.

E(i, j) ) Ei
intr + Ej

intr + Wi,j (49)

Ei
intr ) {-3.0 kcal/mol if i ) 1

0.0 kcal/mol if 2 e i e 9
-2.0 kcal/mol if 10 e i e 36

Ej
intr ) {0.0 kcal/mol if j ) {1, 2}

2.0 kcal/mol if j ) {3, 4}

Wi,j ) {-4.3 kcal/mol if j ) 3;i ) 1
-4.0 kcal/mol if j ) 4;10 e i e 36
0.0 kcal/mol otherwise (50)

TABLE 2: Results from Perfect FEP Simulations at the
Relative Ligand Binding Free Energy Example Calculated
Analytically Using Eqs 17 and 23 for the Uncorrected and
Corrected F̃0f1

rand and Eqs 24 and 31 for the Uncorrected and
Corrected F̃0f1

equi a

free energy difference (kcal/mol)

forward -reverse mean difference

F0f1 exact/multimove -0.67 -0.67 -0.67 0
F̃0f1

rand uncorrected -0.02 -0.02 -0.02 0
deviation 0.65 0.65 0.65
corrected -0.67 -0.67 -0.67 0
deviation 0 0 0

F̃0f1
equi uncorrected 0.06 1.24 0.65 -1.17

deviation 0.73 1.90 1.32
corrected -0.67 -0.67 -0.67 0
deviation 0 0 0

a The results are checked to be exactly reproducible in actual
simulations within statistical error. The calculated values are
compared to the exact statistical mechanics result F0f1 calculated
from eq 5. The exact values are identical to those calculated from
the multimove FEP formula eq 13.

Hsw ) p2

2m
+ mω2q2

2

Hdw ) p2

2m
+ {mω2

2 (q + L
4)2

if q e 0

mω2

2 (q - L
4)2

if q > 0

(51)
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dependent terms cancel from free energy differences. Thus, the
kinetic energy terms can be omitted from the calculation.

A detailed derivation of the theory underlying this example,
plots of the potential energy and the probability distributions
in configuration or phase space are given in the Supporting
Information. Additionally, the Supporting Information contains
example calculations and plots of the effective phase and
configuration space volume as function of the system parameters.

Figure 5 shows the dependency of correction terms for the
single-move FEP simulation schemes defined by eqs 45 and 46
for transformations which can involve a change in box length,
angular frequency, and potential type (single well or double
well). It can be seen that the correction term for the random
single-move scheme depends only on differences in the box
length between the end states, but not on changes in the angular
frequency or in the harmonic potential type of the final state.
This is because ∆∆Frand depends only on the ratio of the total
configuration space volumes of the end states, which is given
by the box length. In contrast, the correction terms for the
equilibrated single-move scheme depend also on the harmonic
potential type and on the angular frequency of the final state,
because these correction terms depend on the ratio of the
effective configuration space volume of the final state and the
total configuration space volume of the initial state. While
the total configuration space volume is given by the box length,
the effective configuration space volume is a function of all
system parameters (see Table 1 of the Supporting Information).

Comparison of Figure 5, b and c, shows that the correction
terms for the transformations of a system with a single-well to
another system with a single-well potential are very similar to
those of the corresponding transformations which substitute the
single-well with a double-well potential. This can be explained
by the logarithmic dependence of ∆∆Fequi on the effective
configuration space volume of the final state, considering that
the effective configuration space volume of the double-well
model differs at most by a factor 2 from that of the correspond-
ing system with a single-well potential (see Figure 2 of the
Supporting Information).

Furthermore, it can be seen that the correction terms can reach
considerable values, especially if the box length or the frequency
differs widely between the end states. Especially for the
equilibrated single-move scheme, the correction terms are often
comparable in magnitude to the total transformation free
energies themselves (plots of the transformation free energies
can be found in the Supporting Information). The Supporting
Information also contains further example calculations and plots
showing the free energy changes and correction terms for two
more example transformations involving a change in box length
and particle number or in angular frequency and particle number.

4. Discussion

In this section we will discuss applications for which the use
of our FEP theory might be advantageous, advantages and
disadvantages of the different simulation schemes, and possible
perspectives for further developments of the FEP theory.

4.1. Applications. Figure 6 shows a schematic depiction of
applications for which our formalism could be advantageous.
The formalism is especially well suited for studying transforma-
tions with end states of differing configuration space volume.
The use of our simulation schemes might, however, also be
favorable for transformations with end states of equal config-
uration space volume that are treatable with traditional FEP
according to the Zwanzig equation.

Figure 6a shows the protonation of a carboxylic acid residue
with multiple tautomers of the protonated form. This problem
was already used as motivating example in the introduction of
this article. The problem is a simple representative of a whole
class of free energy calculations on systems that are defined on
discrete configuration spaces. The number of configurations for
either of the end states can be much larger, as for example if
rotameric forms of protein side chains or multiple redox and
protonation forms of protein cofactors are considered. Our novel
formalism has already been fruitfully applied in such free energy
calculations on different systems. One application was the
calculation of free energy changes in coupled protonation and
reduction processes in the small electron carrier protein azurin
from Pseudomonas aeruginosa. The results of these structure-
based calculations are in very good aggreement with experi-
mental results30,31 and provide a microscopic picture of the
underlying thermodynamics. Another application was the cal-
culation of free energy differences for small molecule binding
processes to study the permeation of of ammonium and
ammonia through the membrane transporter protein Amt-1 from
Archaeoglobus fulgidus. The calculations were based on the
experimental crystal structure of the transporter determined by
Andrade and co-workers.32 The results of our calculations were
compared to experimental results of the same group and aid in
their interpretation. A particularly interesting part of both
applications is the calculation of free energy measures of
cooperativity.33 These works are in preparation for publication
and will be presented elsewhere. The FEP simulation schemes
of the present article are implemented in our Monte Carlo
simulation suite GMCT that will be made publicly available as
open-source software.9

Figure 6b shows the binding of a flexible ligand to a flexible
receptor as representative for the calculation of absolute binding
free energies. Such calculations are often done with molecular
mechanics models to account for the flexibility of the binding

Figure 5. Correction terms for the single-move FEP schemes as function of the frequency scaling factor a and the box length scaling factor b.
Positive and negative values are indicated by blue and red color, respectively. The contour values are given in kcal/mol. The particle mass is set
to m ) 2.0 × 10-26 kg. The box length of the end states 0 and 1 are L0 ) 1.6 × 10-9 m and L1 ) bL0, where b > 0 is a constant factor. The
corresponding angular frequencies are ω0 ) 10-12 s-1 and ω1 ) aω0 where a > 0 is a constant factor. (a) ∆∆Frand: given otherwise equal parameters,
the correction term is identical for transformations leading from single-well to single-well or from single-well to double-well harmonic potential.
(b) ∆∆Fequi for transformations of a single-well to a single-well harmonic potential. (c) ∆∆Fequi for transformations involving a transition from a
single-well to a double-well harmonic potential.
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partners.8,34 The necessity to consider the change in the total
configuration space volume upon binding was recognized earlier
and investigated in depth by Luo and Sharp29 and Hermans and
Wang.35 In their formalism, Ψ occurs as a spatial volume,
relating the volume of the simulated system in the bound state
to some reference volume in the unbound state. The reference
volume corresponds to some reference concentration of the
unbound ligand. Our formalism automatically includes this
concept and generalizes it to include all degrees of freedom of
the system. The change in the total configuration space volume
can be conceptually described by three components. The first
component is caused by the confinement of the ligand to the
vicinity of the binding site and restricts the translational degrees
of freedom. The second component can arise from a restriction
of the rotational degrees of freedom of the ligand relative to
the receptor that is compatible with the binding mode. The third
component arises from the restriction of internal degrees of
freedom in ligand and receptor due to geometric constraints that
are imposed by the necessity to form specific contacts of receptor
moieties with ligand moieties.

Figure 6c shows the stretching or force induced unfolding of
a macromolecule. The end states of transformations in which
the polymer changes its length will often have a different total
configuration space volume.36 There will be a smaller number
of possible configurations in the folded state which is character-
ized by a compact shape (small length or end-to-end distance)
and many defined intramolecular contacts, which further restricts
the available configuration space. The complementary extreme
is constituted by the fully elongated polymer, which has a very
small total configuration space volume. In contrast to the folded
and fully elongated states, there is a much larger number of
configurations compatible with an intermediate elongation.
Additionally, there can be restrictions of the configuration space
imposed by the need to form the native intramolecular contacts
which stabilize the folded state. A simplified model of the latter
example is constituted by the freely jointed chain model of a
macromolecular polymer examined in detail in ref 37.

4.2. Efficiency Comparison of the Simulation Schemes
and Possible Perspectives for Further Developments. All the
problems presented in the example section are solved analyti-
cally, that is, with perfect sampling giving exact results. The
efficiency of a given simulation scheme is, however, a very
important topic in actual free energy calculations from simula-
tion data and requires careful consideration. The choice of the
simulation scheme has practical consequences regarding the
statistical uncertainty of a free energy estimate obtained from a
given number of energy difference samples. The statistical

uncertainty of a single estimate determines the number of
individual free energy estimates or the length of a simulation
needed to reach a given target value of the standard deviation
for the overall free energy estimate.

The equilibrated single-move scheme (eq 31) leads to much
larger statistical uncertainties than the other simulation schemes.
This is mainly due to the high statistical uncertainty of the
correction term given by eq 36 which converges slowly and
often in a very unsteady fashion. Because of these properties,
the equilibrated single-move scheme is in the present form of
little value for practical simulations. The true value of this
simulation scheme might be less immediate as we will discuss
in the end of this section. The choice between the two remaining
simulation schemes has two aspects. On the one hand, the
statistical uncertainty is smaller when collecting energy differ-
ence samples for all possible FEP moves in a simulation
according to eq 13, because always the whole available
information is used including the FEP moves with lowest energy
difference that dominate the exponential average. On the other
hand, the computational effort per sampling step is higher with
the multimove scheme than with the random single-move
scheme (eq 23) due to the higher number of energy difference
samples that need to be calculated in each collection step. It is
difficult to decide a priori which simulation scheme to choose,
because the efficiency of the simulations schemes depends on
the actual probability distributions of initial and final states; i.e.,
the relative efficiency varies with system, energy function, and
transformation. For systems defined on a discrete configuration
space, one is in principle free to choose one of the simulation
schemes. However, for systems with a continuous configuration
space it might be difficult to evaluate the integral over all
possible FEP moves as demanded by the multimove simulation
scheme eq 13.

Staging16 and the Bennett acceptance ratio method11 can be
used to increase the efficiency of both simulation schemes as
with traditional FEP.7,8,25 The use of these two methods with
our FEP simulation schemes is outlined in section B of the
Supporting Information.

Although the equilibrated single-move scheme is of limited
value for practical simulations because of its low efficiency, it
is interesting in its own right from a theoretical point of view.
In addition, comparison to the random single-move scheme
might hint at possible perspectives for further developments of
the FEP theory. The two single-move schemes use stochastic
mappings that employ different probability distributions. It is
tempting to ask whether other probability distributions could

Figure 6. Three example applications of free energy simulations for which it could be crucial to consider the principles presented in the present
article. (a) Calculation of protonation free energies with multiple tautomers. One can recognize the similarity to the motivating example from
section 1. Similar situations arise in the treatment of other amino acids (e.g., histidine) and many important biological cofactors like flavines and
quinones.9 (b) General binding free energy calculations with flexible ligands and/or flexible receptors. (c) Calculation of (un)folding free energies
for flexible polymers like proteins or nucleic acids.
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be used to obtain FEP simulation schemes with optimized
efficiency. It seems worthwhile to pursue this idea in future
work.

5. Summary

We have presented a generalized FEP theory that extends
the traditional FEP theory by some novel concepts and pos-
sibilities. Our formalism is inspired by Monte Carlo methods
and previous interpretations of FEP in their terminology.11,12

The novel formalism is applicable to a general class of
transformations. Transformations in which the end states have
a differing configuration space volume can be considered for
systems defined on continuous or discrete configuration spaces.

The main results of this paper are three simulation schemes
for free energy calculations with FEP. All simulation schemes
partition the variables that define the position of the system in
configuration space into two types to make the energy calcula-
tions more efficient. The first variable type has differing value
ranges at the two end states (reactive subsystem) whereas the
second variable type does not have these differing value ranges
(environment subsystem). Each simulation scheme starts from
microstates sampled from the equilibrium distribution of the
initial state and collects energy differences for transitions or
FEP moves to microstates of the final state. A move between
the end states amounts to altering one or more variables of the
reactive subsystem from values permitted in the initial state to
values permitted in the final state. The domain of possible moves
is defined by the ranges of values permissible for the variables
forming the reactive subsystem of the final state. The way to
select from the possible moves differs among the simulation
schemes. The multimove FEP simulation scheme uses energy
differences for all possible transitions and requires no correction.
The two remaining simulation schemes use single FEP moves
like traditional FEP based on the Zwanzig equation. The novelty
in comparison with previous FEP methods10,14 is that these
simulation schemes are based on a stochastic instead of a
deterministic and bijective mapping of the two end states.
Traditional FEP maps each differential configuration space
element of the initial state to exactly one configuration space
element of the final state and vice versa. Our new approach
selects the configuration space element of the final state to be
mapped to a given configuration space element of the initial
state based on a probability distribution. The first single-move
scheme randomly selects the microstates from the final state
for the FEP move. The free energy estimate obtained from this
simulation scheme must be corrected for the relative total
configuration space volume of the end states. The second single-
move scheme selects the microstates according to the equilib-
rium distribution of the final state. The free energy estimate
obtained from this simulation scheme must be corrected for the
ratio of the effective configuration space volume of the final
state and the total configuration space volume of the initial state.

We have discussed the relevance of our method to applica-
tions of general interest in the field of free energy calculations
on biomolecular systems. Our theoretical findings are in line
with established knowledge and provide a general, formal
integration of this knowledge into FEP theory. Furthermore, we
pointed out advantages of our simulation schemes in practical
free energy calculations. Our discussion specifically addressed
the calculation of binding free energies and free energies of
polymer folding.

The novel formalism provides a generally applicable theoreti-
cal framework for FEP that promises to have potential for further
developments and applications.
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