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Introduction

Electrostatic interactions are the most relevant for un-
derstanding biochemical systems. Acid-base and redox
reactions create or destroy unit charges in biomolecules
and can thus be fundamental for their function. Besides
association reactions and chemical modi®cations such as
phosphorylations, they are the reason for changes in
protein properties. Protonation or deprotonation of
titratable groups can cause changes in binding a�nities,
enzymatic activities, and structural properties. Very of-
ten, protonations or deprotonations are the key events
in enzymatic reactions. The reduction or oxidation of
redox-active groups has a similar importance. In par-
ticular, the reduction of disul®de bonds can cause un-
folding or functionally important conformational
transitions. Consequently, the function of most proteins
depends crucially on the pH and on the redox potential
of the solution.

Acidic denaturation of proteins in the stomach is a
prerequisite for protein degradation during digestion.
Beside this rather unspeci®c e�ect, the environment can
tune the physiological properties of proteins in a speci®c
manner. Di�erent values of pH or redox potential in
di�erent organs, tissues, cells, or cell compartments steer
protein function. Physiological redox and pH bu�ers
such as glutathione and phosphates control these envi-
ronmental parameters in living systems strictly. A few
examples emphasize the physiological importance of pH

and redox potential. The pH gradient in mitochondria
or chloroplasts drives ATP synthesis. This pH gradient
is in both systems generated by several proton transfer
steps that couple to a sequence of redox reactions. In
hemoglobin, pH in¯uences O2 binding and thus regu-
lates O2 release during blood circulation. This behavior
is also known as the Bohr e�ect. Pepsinogen cleaves it-
self in an acidic environment to the highly active pepti-
dase pepsin. Membrane fusion during in¯uenza virus
infection involves large pH-induced structural changes
of the protein hemagglutinin.

Because of their outstanding signi®cance, electro-
static interactions in proteins have been investigated
intensively in the last decades (for review see Warshel
and Russel 1984; Harvey 1989; Sharp and Honig 1990;
Bashford 1991; Warshel and AÊ qvist 1991; Moult 1992;
Madura et al. 1994; Sharp 1994; Gilson 1995; Honig and
Nicholls 1995; Beroza and Case 1998; Warshel and
Papazyan 1998). Several di�erent approaches are used
to describe the electrostatics of proteins. The most de-
tailed descriptions can be made by quantum-chemical
approaches (Szabo and Ostlund 1989; Ziegler 1991;
Lowe 1993; Naray-SzaboÂ and Ferenczy 1995; Baerends
and Gritsenko 1997). Such computationally expensive
methods, however, only work for relatively small mole-
cules and peptides. A cruder approximation must be
chosen for larger systems such as solvated proteins.
Molecular mechanics force ®elds are widely used for that
purpose (Karplus and Petsko 1990; van Gunsteren and
Berendsen 1990; Brooks and Case 1993; Kollman 1993).
In these force ®elds, electrostatic interactions are mod-
eled by (screened) Coulomb potentials. Most often, the
solvent is considered explicitly in these approaches, i.e.,
at a microscopic level. In these simulations, fractions of
unit charges ± so-called atomic partial charges ± are
assigned to each atom. The atomic partial charges are
adjusted to ®t the electrostatic potential obtained from a
quantum-chemical calculation of small molecules with
equivalent chemical groups (Breneman and Wiberg
1990). Such atomic partial charges are also used in
continuum electrostatic approaches that rely on the so-
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lution of the Poisson-Boltzmann equation (PBE; Harvey
1989; Sharp and Honig 1990; Bashford 1991; Madura
et al. 1994; Sharp 1994; Gilson 1995; Honig and
Nicholls 1995) or on the generalized Born model (Still
et al. 1990; Schaefer and Karplus 1996; Schaefer et al.
1998). In these models the protein is represented as a
continuum with a low dielectric constant and individual
atomic partial charges, while the solvent is represented
as a continuum with a high dielectric constant and
without individual charges. Mobile salt ions of the so-
lution are described by an ionic strength. This model
provides a macroscopic description of electrostatic in-
teractions of the solvent with a dissolved protein
whereas the protein is still represented in atomic detail.
Warshel and co-workers (Warshel and Russel 1984;
Warshel and AÊ qvist 1991) developed an alternative ap-
proach that represents the solvent by space-®xed dipoles
± so-called Langevin dipoles ± while the protein is
modeled by a conventional force ®eld. Consequently,
this description corresponds to a semi-microscopic rep-
resentation of the protein-solvent system.

In this paper, we review the use of macroscopic sol-
vent models to determine protonation and redox equi-
libria in proteins. Speci®cally, we will focus on methods
that are able to calculate the protonation equilibria of
proteins that have many titratable groups. Some of the
methods reviewed here can account for conformational
changes going along with a change of the protonation
pattern. Furthermore, we discuss problems and possible
future developments in this ®eld as well as some of the
recent applications.

Fundamental description of acid-base
and redox reactions

The protonation equilibrium of a single titratable group
can be described by Eq. (1), where Ka is the equilibrium
constant:

HA�Ka

Aÿ �H�; Ka � �A
ÿ��H��
�HA� �1�

The pH of the solution and the pKa of an acid are de-
®ned as the negative decadic logarithm of the hydrogen
ion concentration (pH � ÿ log�H��) and the Ka value
(pKa � ÿ logKa), respectively. Using these de®nitions
one obtains the Henderson-Hasselbalch equation
[Eq. (2)] from Eq. (1):

pH � pKa � log
�Aÿ�
�HA� �2�

The relation between pKa and the standard reaction free
energy G�a is given by G�a � ÿRTpKa ln 10, where R is the
gas constant and T is the temperature. The probability
hxi that the acid HA is protonated is given by hxi =
[HA]/([HA]+[A)]). With this de®nition and Eqs. (1)
and (2) one obtains

xh i � exp�ÿ ln 10�pHÿ pKa��
1� exp�ÿ ln 10�pHÿ pKa�� �3�

From Eq. (3) one can read that RT ln 10�pHÿ pKa)
equals the free energy required to protonate a titratable
group at a given pH and temperature.

The description of redox equilibria is in principle very
similar to that of acid-base equilibria. The equilibrium
between the redox couple Aox=A

ÿ
red is de®ned in Eq. (4):

Aox � eÿ �KET

Aÿred; KET � �Aÿred�
�Aox��eÿ� �4�

where KET is the equilibrium constant. Analogously to
the pH and the pKa in derivation of the Henderson-
Hasselbalch equation [Eq. (2)], one de®nes the redox
potential of the solution or the electromotive force and
the standard redox potential of the redox couple
Aox=A

ÿ
red as E � ÿRT=F ln�eÿ� and E� � RT=F lnKET,

respectively. Here, however, the natural logarithm rather
than the decadic logarithm is used. With the factor RT/
F, where F is the Faraday constant in A s, one obtains E
and E° in volts. The relation between E° and the stan-
dard reaction free energy G�et is given by G�et � FE�. With
these de®nitions and Eq. (4) one obtains the Nernst
equation [Eq. (5)], which is analogous to the Henderson-
Hasselbalch equation [Eq. (2)]:

E � E� � RT
F

ln
�Aox�
�Aÿred�

�5�

The probability hyi that a redox-active group is in its
oxidized state is de®ned as hyi � �Aox�=��Aÿred� � �Aox��.
In analogy to Eq. (3), the relation between the proba-
bility hyi, the redox potential of the solution E, and the
standard redox potential E° is given by Eq. (6):

yh i � exp F
RT �E ÿ E��ÿ �

1� exp F
RT �E ÿ E��ÿ � �6�

Consequently, the free energy required to oxidize a
redox-active group at a given redox potential of the
solution E equals ÿF �E ÿ E��.

Computation of the electrostatic potential
by the Poisson-Boltzmann equation

The electrostatic potential /�r; q� at position r, arising
from the charge distribution q�r� in an inhomogeneous
dielectric medium is de®ned by the PBE [Eq. (7)]:

r�e�r�r/�r��

� ÿ4p q�r� �
XK

i�1
cbulki Zie0 exp

ÿZie0/�r�
RT

� � !
�7�

where r is gradient operator with respect to the spatial
coordinates, e�r� is the spatially varying dielectric con-
stant, cbulki is the concentration of ions i in the bulk and
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Zi is their charge. For small electrostatic potentials
(e0/�r�=RT < 1), the PBE can be linearized by expand-
ing the exponential up to the linear term [Eq. (8)]:XK

i�1
cbulki Zie0 exp

ÿZie0/�r�
RT

� �

�
XK

i�1
cbulki Zie0 ÿ

XK

i�1
cbulki Z2

i e20
/�r�
RT

�8�

The ®rst term in Eq. (8) vanishes because of electro-
neutrality of the solution. It is useful to de®ne the ionic
strength I [Eq. (9)] and the inverse Debye length j
[Eq. (10)]:

I � 1

2

XK

i�1
cbulki Z2

i �9�

j2�r� � 8pe20I�r�
RT

�10�

With the de®nitions in Eqs. (9) and (10), and with
Eqs. (7) and (8), one obtains the linearized Poisson-
Boltzmann equation [LBPE; Eq. (11)]:

r�e�r�r/�r�� � ÿ4pq�r� � j2/�r� �11�
In the LBPE, the electrostatic potential is additive as
long as the dielectric boundaries of the molecular system
remain unchanged. This means that if q � q1 � q2 then
/�r; q� � /�r; q1� � /�r; q2� is valid.

Analytical solutions of the LPBE exist only for simple
geometries (Kirkwood 1934; Daune 1997). For complex
geometries, solutions can be obtained by numerical
methods.Most often, the PBE is solved by ®nite di�erence
methods (see Honig and Nicholls 1995 for a review), but
also other numerical methods to treat partial di�erential
equations such as boundary element methods (Sklenar
et al. 1990; Zauhar and Varnek 1996) or multigrid-based
methods (Holst et al. 1994; Holst and Saied 1995) can be
used to solve the PBE or its linearized form. Most often,
®nite di�erence approximations are used for pKa calcu-
lations, although boundary element methods are some-
times also applied (Ripoll et al. 1996; Ju�er et al. 1997).

The value of the dielectric constant in proteins

Which value of the dielectric constant is appropriate for
proteins is widely and controversially discussed (Harvey
1989; Gilson 1995; Warshel and Papazyan 1998).
Antosiewicz et al. (1994) obtained best agreement with
experiments by using a dielectric constant of 20 for the
protein, rather than the commonly used dielectric con-
stant of 4. These results were obtained with the so-called
``full-charge model'', i.e., a unit charge is placed on one
atom of a charged titratable group. In a more recent
study, however, they could show that the use of a ``de-
tailed charge model'', i.e., when the charge is distributed
over all atoms of the titratable group, yields agreement

with experiments when a dielectric constant of 4 was
used (Antosiewicz et al. 1996a). Demchuck and Wade
(1996) analyzed the dependence of calculated pKa values
on the dielectric constant carefully. They made the in-
teresting observation that a large dielectric constant led
to better agreement with experiments for residues that
are on the surface of the proteins, while for residues that
are buried in the protein better results were obtained
with a small dielectric constant. This observation is in
good agreement with the calculation of the dielectric
constants in proteins (Simonson et al. 1992; Simonson
and Perahia 1995a, b; Simonson and Brooks 1996). The
dielectric constant at the more ¯exible surface of
proteins turned out to be about 10±20, while it was
about 2±4 in the interior of the protein. The inclusion of
individual water molecules in computations of pKa val-
ues in proteins does not improve the agreement with
experimental results (Gibas and Subramaniam 1996).
This may be due to the unknown orientation of water
molecules in crystal structures (Ullmann et al. 1996;
Kannt et al. 1998; Rabenstein et al. 1998a, b). Further-
more, water molecules may reorient when a nearby
titratable group changes its protonation. This would,
however, require the inclusion of molecular ¯exibility in
titration calculations, which is not done so far.

Quantum-chemical calculations of pKa values
and standard redox potentials E 8

In order to calculate the energy required to protonate a
titratable group inside a protein, it is necessary to know
the energy required to protonate an isolated titratable
group of the same kind, a so-called model compound.
The same holds for a redox-active group. This energy
can be measured experimentally, but in some cases the
experimental values for suitable model compounds are
not available or it is even impossible to synthesize proper
model compounds. This is for instance the case for some
metal centers in proteins which cannot form in solution.
In these cases, quantum-chemical calculations are re-
quired to determine the appropriate energies. A large
variety of methods exist to estimate acidities (Lim et al.
1991; Chen et al. 1994; Potter et al. 1994; Mousca et al.
1995; Chandra and Goursot 1996; Li et al. 1996; Merrill
and Kass 1996; Kallies and Mitzner 1997; Richardson
et al. 1997; Topol et al. 1997; VilainÄ o et al. 1997).
Noodleman, Bashford, Case, and co-workers developed
a quantum-chemical method that considers the envi-
ronment by a dielectric continuum model (Lim et al.
1991; Chen et al. 1994; Mousca et al. 1995; Li et al.
1996; Richardson et al. 1997; Li et al. 1998).

Quantum-chemical corrections to electrostatic energies

Characterizing energetics of proton or electron transfer
in molecular systems requires the calculation of energy
changes DE between di�erent states of molecular groups
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involved in these processes. We will henceforth call the
molecular groups participating actively in the considered
redox or protonation process the ``relevant system'' and
the remaining part of the molecular system the ``mo-
lecular environment''. If conformational changes going
along with the changes of the redox or protonation state
are ignored, the main contribution to the energy change
of these processes is of electrostatic nature because the
charge state of the relevant system changes. The elec-
trostatic energy DEelec is calculated from a molecular
model with atomic partial charges using an inhomoge-
neous dielectric to represent the protein-water-system.
However, there are also corrections which appear only
at the level of ab initio quantum-chemical computations
DEqcÿcorr and cannot be accounted for by simple elec-
trostatic energy terms, i.e., DE � DEelec � DEqcÿcorr. An
exact quantum-chemical treatment of the complete
molecular system would consider all energy contribu-
tions but is practically impossible.

There are two possible approximation procedures to
determine the quantum-chemical correction DEqcÿcorr.
One uses a quantum-chemical method to estimate the
energy di�erence DEmodel for a small molecular model
system which normally would involve the relevant sys-
tem and possibly some molecular groups in its vicinity
under vacuum conditions. The other possibility is to
take the energy di�erence DEmodel from experimental
data of a molecular model system which contains the
relevant system or a molecular system close enough to
the relevant system considered. Comparing these
energies with the values obtained from an evaluation of
the corresponding electrostatic energies DEmodelÿelec of
the model system, the quantum-chemical correction
of the model system can be obtained from the relation
DEqcÿcorr � DEmodel ÿ DEmodelÿelec and used as the
quantum-chemical correction for the energies of the
molecular system considered. The underlying assump-
tion is that the quantum-chemical corrections to the
energy do not change if the relevant system is embedded
in di�erent molecular environments.

Quantum-chemical corrections to the electrostatic
energy are due to the breaking or formation of covalent
bonds (cov) and self-polarization e�ects within the rel-
evant system (sp) and polarization e�ects induced
by interactions with the molecular environment (ip).
Thus we have DEqcÿcorr � DEcov � DEsp � DEip. Energy
contributions from self-polarization are accounted for
properly by using quantum-chemical computations for
the relevant system only. Screening electrostatic inter-
actions by using a dielectric constant larger than unity
can reduce the strength of polarization e�ects but not
replace them. Electronic polarization (ep) and nuclear
polarization (np) can be discriminated, such that
DEip � DEnp� DEep. Normally, electrostatic energies of
molecular systems are calculated only by considering
one molecular conformation for each state of the rele-
vant system. Under these circumstances, nuclear polar-
ization e�ects are ignored. There are two types of
interactions involving electronic polarization e�ects.

One is the interaction of charges from one molecule
polarizing the electronic wave function of a neighbor
molecule, which we call charge-polarization (cp); the
other is the attractive interaction of two molecules by
mutual polarization (pp) of their electronic wave func-
tions, DEep � DEcp � DEpp.

For acid-base and redox reactions the relevant system
changes its total charge by one unit, giving rise to con-
siderable changes of its molecular charge distribution.
Hence, besides electronic self-polarization e�ects within
the relevant system, a dominant part of the energy dif-
ferences from charge-polarization is due to interactions
of charges from the relevant system with the polarized
electronic wave functions from the molecular environ-
ment (rcp). The second contribution to the energy dif-
ference is due to a change of the polarizability of the
relevant system interacting with charges from the mo-
lecular environment (ecp), DEcp � DErcp � DEecp. While
the changes in the charge distribution of the relevant
system occurring during a transition of the redox or
protonation state are expected to be large, changes in the
polarization of the relevant system will generally be
smaller. Hence, the corresponding energy contribution
DEecp will be smaller than DErcp.

For a molecular environment consisting of small polar
molecules like water which undergo fast reorientational
motions, the contribution of electronic polarization of
the environment is approximately replaced by nuclear
polarization if the atomic partial charges are enlarged
correspondingly. In energy functions for proteins, the
strength of H-bonds involving also polarization e�ects is
adjusted by enlarging the atomic partial charges of the
atoms participating in the H-bond. In general this pro-
cedure would work for all immobilized molecular groups
in biological macromolecules, though it is not well jus-
ti®ed. A better way to calculate the energy contribution
DErcp is to use suitable values for the atomic partial
charges of the di�erent states of the relevant system and
the corresponding values for the polarizabilities of the
molecular environment. Consideration of these energy
contributions would lead to a major improvement for the
computed values of electrostatic energies.

While the attractive 1/r6 terms of conventional
Lennard-Jones interactions account for the interaction
due to mutually induced electronic polarization of all
atomic groups of a molecular system in the electronic
ground state, no suitable parameters are available for
di�erent charge and electronic states involving the rele-
vant system. A molecular mechanics force ®eld being
able to account for changes in electronic polarization
going along with a change of the redox or protonation
state of the relevant system would require a major e�ort
to calculate the polarizabilities for the di�erent charge
states of the molecular relevant system by quantum-
chemical methods. The resulting energy corrections will
be smaller than corrections from charge-polarization
e�ects (cp). Hence, as long as one neglects electronic
polarization e�ects of the type ecp, there is no need to
consider also adjusted Lennard-Jones interactions.
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Nuclear polarization contributions to energy di�er-
ences between the di�erent charge states of the relevant
system can be calculated using molecular mechanics en-
ergy functions with ¯exiblemolecularmodels and suitable
values of the atomic partial charges accounting for the
electrostatic potential in the vicinity of the relevant sys-
tem. Since the changes in the molecular conformations
should be consistent with the molecular environment, not
only electrostatic energy terms but also bonded and con-
ventional Lennard-Jones interactions should be consid-
ered in this case. The quality of the results may depend on
details of the procedure. If the conformation of the mo-
lecular environment is adjusted to a change of the charge
state of the relevant system by energy minimization only,
the resulting energy values may agree better with experi-
mental data if Lennard-Jones interactions are not con-
sidered (Ullmann et al. 1996).

Titration of a protein in a single conformation

The calculation of protein titration curves involves two
steps. In the ®rst step, the intrinsic pKa values and the
interaction energies between titratable groups are com-
puted. In the second step, these energy terms are used to
calculate the protonation probabilities of the titratable
groups in a protein. The partition in two independent
steps relies on the additivity of the electrostatic poten-
tials obtained from the LPBE. These steps are described
in the two subsequent sections.

Computation of the protonation state energies

The pKa value of a titratable group within a protein can
be considerably shifted compared to the pKa value of the
same titratable group in aqueous solution. The shift is
caused by interactions between the charges of the tit-
ratable group and other charges in the protein and also
by changes in the dielectric environment of the titratable
group when the group is transferred from aqueous so-
lution into the protein. If the protonation of only a
single titratable group in the protein depends on pH, the
pKa shift is related to the di�erence between protonation
energy of this group in the protein and the protonation
energy of a proper model compound. The shifts of the
pKa values can be obtained via the thermodynamic cy-
cles shown in Fig. 1. The pKa values of model com-
pounds in aqueous solution are usually determined
experimentally (see Tables 1 and 2) or corresponding
energies are calculated quantum chemically. The ther-
modynamic cycle in Fig. 1 illustrates the calculation of
the shift of the pKa value due to the transition of the
titratable group from the gas phase or the aqueous so-
lution to the protein environment. The thermodynamic
basis and the underlying assumptions that allow the
discrimination of a system into a quantum mechanical, a
classical mechanical, and a continuum electrostatic re-

gion are given in detail by Gilson and co-workers (Gil-
son et al. 1997; Luo et al. 1998).

Quite often the protonation of more than one titrat-
able group in a protein depends on pH. Thus the in-
teraction between these titratable groups is also pH
dependent. Owing to the interactions between these
groups, titration curves of amino acids in proteins can
deviate considerably from sigmoidal Henderson-Has-
selbalch titration curves as given by Eq. (19). Because of
these interactions, it is sometimes impossible to assign a
unique pKa value to a speci®c titratable group. There-
fore, the pH value at which the protonation probability
of the titratable group is 0.5 is often used instead to
describe the titration behavior. This so-called pK1/2

value does not directly relate to an energy di�erence and
is thus not appropriate to discuss the energetics of cat-
alytic mechanisms. Equation (12) de®nes the pKa value
on the basis of the protonation probability hxi:

pKa � pH� 1

ln 10
ln

xh i
1ÿ xh i �12�

This de®nition is more appropriate to discuss energetic
issues at a given pH value. According to this de®nition,
the pKa value depends explicitly and implicitly on pH,
because the protonation probability hxi depends on pH.
Both pH dependencies cancel for standard Henderson-
Hasselbalch-type titration curves, yielding a pH-inde-
pendent pKa value.

Often electrostatic interactions are the predominant
contributions that cause the di�erence between the pro-
tonation energies of a titratable group in a protein and in
aqueous solution. Then, the PBE or its linearized form
provides a reasonable approximation of this energy dif-
ference. The additivity of the solutions of LPBE makes it
possible to separate the protonation energy of a titratable
group in a protein into several independent contributions.
Therefore, the method described here is exact in the limit

Fig. 1 Thermodynamic cycle to calculate the protonation energy from
gas phase properties. In the ®rst step the molecule is transferred from
the gas phase (g) to a solution (s) and in a second step the molecule is
transferred from the solution into the protein (p). The pKa is in

principle given by pKa � 1
ln 10RT DGs�AH,A� � 1

ln 10RT �DGg�AH,A� �
DGg;s�A� ÿ DGg;s�AH� � DGg;s�H��: The calculation scheme given in
Eqs. (13)±(15) is however required to cancel arti®cial energy contri-
butions that are caused by the ®nite di�erence method used to solve
the Poisson-Boltzmann equation
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of the LPBE. The non-linear PBE (NPBE) has sometimes
been used to calculate pKa values with the framework
reviewed in this article (Oberoi and Allewell 1993; Ripoll
et al. 1996). However, the applicability of the NPBE, for
which the contributions to the electrostatic potential are
non-additive, has never been studied systematically.

One contribution to the protonation state energy
arises from the protonation of an isolated model com-
pound (see Fig. 2) of the titratable group l. This energy
contribution is related to the pKa of this model com-
pound in aqueous solution, pKmodel

a;l . Transferring the
titratable group l from aqueous solution into a protein,
in which all other titratable groups are in their uncharged
protonation form, causes an energy shift. This energy
shift consists of two contributions. The ®rst energy
contribution DDGBorn

l is a Born energy term [Eq. (13)],
which arises from the interaction of the partial charges
Qi;l of the titratable group l with its reaction ®eld:

DDGBorn
l � 1

2

XNl

i�1
Qh

i;l�/p�ri; Qh
l� ÿ /m�ri; Qh

l��

ÿ 1

2

XNl

i�1
Qd

i;l�/p�ri; Qd
l� ÿ /m�ri; Qd

l�� �13�

The second energy contribution DDGback
l arises from the

interaction of the charges Qi;l of the titratable group l
with background charges of non-titrating groups and
with the charges of the uncharged form of all other
titratable groups in the protein [Eq. (14)]:

DDGback
l �

XNp

i�1
qi�/p�ri; Qh

l� ÿ /p�ri; Qd
l��

ÿ
XNm

i�1
qi�/m�ri; Qh

l� ÿ /m�ri; Qd
l�� �14�

The summations in Eq. (13) run over the Nl atoms of
group l that have di�erent charges in the protonated (h)
(Qh

i;l) and in the deprotonated (d) (Qd
i;l) form. The ®rst

summation in Eq. (14) runs over the Np charges of the
protein that belong to atoms in non-titratable groups or
to atoms of titratable groups (m 6� l) in their uncharged
protonation form. The second summation in Eq. (14)
runs over the Nm charges of atoms of the model com-
pound that do not have di�erent charges in the di�erent
protonation forms. The upper case letters Q refer to
charges of titratable groups; lower case letters q denote
charges of the reference protonation state, i.e., charges

Table 1 pKa values of model
compounds for biologically re-
levant titratable groups

Titratable group Model compound pKa Ref.

a-Carboxyl group 3.8 Nozaki and Tanford (1967)
a-Amino group 7.5 Nozaki and Tanford (1967)
Aspartate 4.0 Nozaki and Tanford (1967)
Glutamate 4.4 Nozaki and Tanford (1967)
Cysteine pK1 9.5 Nozaki and Tanford (1967)
Tyrosine pK1 9.6 Nozaki and Tanford (1967)
Arginine 12.0 Nozaki and Tanford (1967)
Lysine 10.4 Nozaki and Tanford (1967)
Tryptophane 16.8 Yagil (1967)
Histidine pKa,1 (Nd1)

a 7.0 Tanokura (1983)
Histidine pKa,1 (Ne2)

b 6.6 Tanokura (1983)
Histidine pKa,2 14.0 Kaim and Schwederski (1995)
Heme Propinate 4.8 Moore and Pettigrew (1990)
Phosphate pKa,1 1.96 Holleman and Wiberg (1964)
Phosphate pKa,2 6.92 Holleman and Wiberg (1964)
Phosphate pKa,3 11.72 Holleman and Wiberg (1964)
Sulfate pKa,1 1.8 Weast (1986)
Sulfate pKa,2 6.9 Weast (1986)
Water pKa,1 )1.7 Weast (1986)
Water pKa,2 15.7 Weast (1986)
Glycerol-2-phosphate pKa,1

c 1.3 Tanford (1962)
Glycerol-2-phosphate pKa,2

c 6.6 Tanford (1962)
Glucose-1-phosphate pKa,2

c 6.5 Tanford (1962)

aNd1 is methylated
bNe2 is methylated
cAs models for phosphorylated sugars

Table 2 Redox potentials
E°¢ of model compounds for
biologically relevant groups at
pH = 7 (biological standard)

Redox couple E°¢ (mV) Ref.

Heme model (Met, His) )70 Wilson (1983)
Heme model (His, His) )220 Wilson (1983)
Tyrosine.+/tyrosine +930 Cramer and Kna� (1991)
O2/O2

.) )330 Cramer and Kna� (1991)
Pheophytin )600 Cramer and Kna� (1991)
FMN ox/sq (pH 7.0) )238 Rao et al. (1993)
FMN sq/red (pH 7.0) )172 Rao et al. (1993)
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of non-titratable groups and charges of the titratable
groups in their uncharged protonation form. The terms
/m�ri;Qh

l�;/m�ri;Qd
l�;/p�ri;Qh

l�, and /p�ri;Qd
l� denote

the values of the numerical solutions of the LPBE at the
position r of the atom i. The numerical solution of the
LPBE was obtained using the shape of either the protein
(subscript p) or the model compound (subscript m) as
dielectric boundary and assigning the charges of the
titratable group l in either the protonated (Qh

l) or the
deprotonated (Qd

l) form to the respective atoms. These
two energy contributions and the pKa value of the model
compound are combined to give the so-called intrinsic
pKa value, pK intr

a;l [Eq. (15)]:

pK intr
a;l � pKmodel

a;l ÿ 1

RT ln 10
�DDGBorn

l � DDGback
l � �15�

The intrinsic pKa value is the pKa value that this par-
ticular titratable group would have if all other titratable
groups are in their reference protonation form, i.e., the
neutral protonation form. The interaction Wlm between
two titratable groups l and m in their charged form is
de®ned in Eq. (16):

Wlm �
XNl

i�1
�Qh

l;i ÿ Qd
l;i��/p�ri;Qh

m � ÿ /p�ri;Qd
m �� �16�

The energy of a protonation state n of the protein, which
is characterized by the protonation state vector
~xn � �xn

1; x
n
2; . . . ; xn

N �, is given by Eq. (17):

Gn �
XN

l�1
�xn

l ÿ x0l�RT ln 10�pHÿ pK intr
a;l �

� �

� 1

2

XN

l�1

XN

m�1
�Wlm�xn

l � zol��xn
m � zom �� �17�

where the xn
l are 1 or 0 depending whether group l is

protonated or not, and zol is the unitless formal charge of
the deprotonated form of group l, i.e., )1 for acids and
0 for bases. The sums run over all N titratable groups.
Here and in all subsequent equations it is assumed that
Wll = 0. The additional x0l-term of the intrinsic pKÿa -
values refers to the reference protonation state (0). It
rede®nes the zero point of the energy such that Gn

vanishes for the reference protonation state. This leads
to signi®cant simpli®cations of the expressions needed if
di�erent conformations are considered, see below.
Equivalent expressions are used in basically all ap-
proaches that solve the LPBE for obtaining titration
curves (Bashford and Karplus 1990, 1991; Beroza et al.
1991; Yang et al. 1993; Antosiewicz et al. 1996a; Beroza
and Fredkin 1996).

If the molecular system contains beside the N titrat-
able groups also K redox-active groups, Eq. (17) needs
an additional term that accounts for the redox potential
E of the solution, as shown in Eq. (18) (Ullmann 1998):

Gn �
XN

l�1
��xn

l ÿ x0l�RT ln 10�pHÿ pK intr
a;l ��

ÿ
XK

g�1
�xn

gF �E ÿ E�;intrg ��

� 1

2

XN�K

m�1

XN�K

l�1
�Wml�xn

l � zol��xn
m � zom �� �18�

Here, E�;intrg is the intrinsic standard redox potential of
the redox-active group g; for redox-active groups, xn

g is
either 1 or 0 depending whether group g is oxidized or
not; zog is the formal charge of the reduced form of group
g. The sum in the last term runs over all titratable and
redox-active groups. With this approach, also the cou-
pling between redox and protonation reactions can be
investigated.

In the framework of this description, the problem of
calculating the energy of each of the 2N protonation
states of a protein with N titratable groups is scaled
down. N intrinsic pKa values and (N ´ (N ) 1))/2 in-
teraction energies Wml are computed, which are used for
the evaluation of the energies of the 2N protonation
states. Instead of solving the LPBE for the protein 2N

Fig. 2 Titratable groups and model compound in an ionic solution.
The model compound needs to have the same conformation as the
amino acid in the protein in order to maintain the cancellation of the
arti®cial grid energy using the thermodynamic cycle technique
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times numerically, i.e., once for each protonation state,
only 2 ´ N numerical solutions of the LPBE for the
protein are needed. In addition, 2 ´ N numerical solu-
tions of the LPBE for the model compounds are re-
quired no matter if the protonation state energy is
computed as a sum over intrinsic pKa values and inter-
action energies or directly from the LPBE for each
protonation state. The calculation of the energy of a
particular protonation state n of the protein is given by
Eq. (17). This energy can in principle be used in Eq. (19)
to obtain protonation probabilities as the thermody-
namic average of the protonation of group l, but a
complete evaluation of the sum constituting the ther-
modynamic average is too time consuming for proteins
with many titratable groups. Therefore, approximation
methods have been developed to reduce the computa-
tional burden (Tanford and Roxby 1972; Bashford and
Karplus 1991; Gilson 1993; Yang et al. 1993) which are
described in the next section.

Calculation of the protonation probability
of titratable groups in a protein

For the sake of simplicity, we no longer discriminate
between titratable and redox-active groups and denote
them both as titratable. If both, titratable and redox-
active groups, are involved, Eq. (18) will have to be used
to calculate state energies. All approximation methods
presented here are, however, easily adjustable to com-
pute also oxidation probabilities. Several strategies to
calculate protonation probabilities of proteins or other
biomolecules exist in the literature. Here, we describe
only those that are most commonly used.

Direct evaluation of the statistical average

Assuming that each titratable group has only two pos-
sible protonation forms, the total number of protona-
tion states of a protein with N titratable groups is 2N.
The protonation state of the protein can be described by
a N-component vector ~x � xn

1; x
n
2; . . . ; xn

N

ÿ �
. The compo-

nents xl of that vector adopt either the value 1 or 0
depending on whether group l is protonated or depro-
tonated. The protonation probability hxli of the group l
is given by a thermodynamic average over all possible
protonation states of the protein given by Eq. (19):

xl

 � �P2N

i�1 xi
l exp�ÿGi=RT �P2N

i�1 exp�ÿGi=RT �
�19�

where xi
l is one or zero depending whether group l is

protonated in the protonation state i or not. Gi is the free
energy of the protonation state i. From the probability
hxli, it is possible to calculate the free energy required to
protonate a titratable group l at a given pH value ac-
cording to Eq. (20):

Gl � ÿRT ln
xl

 �

1ÿ xl

 �ÿ � �20�

Gl represents a thermodynamic average over all proto-
nation states and is the energy required to protonate
group l at a given pH and temperature, while Gi is the
free energy of the speci®c protonation state i of the
protein.

Tanford-Roxby approximation

One of the earliest attempts to calculate pKa values of
individual amino acids in proteins was made by Tanford
and Roxby (1972). Later, Bashford and Karplus (1991)
showed that this approach is a mean ®eld approximation
of the exact treatment. The Tanford-Roxby approxi-
mation works well for weakly interacting titratable
groups, but fails if the protonation of two groups with
similar pKa is strongly coupled. It is computationally
much less expensive than the exact treatment, because
the summation over all possible states in Eq. (19) is
avoided. As already pointed out by Tanford and Roxby
(1972), the pKa calculated by this approach depends on
pH.

The Tanford-Roxby approximation assumes that the
average protonation of a titratable residue depends on
the average charge of all other titratable groups. The
pKa value of a titratable group in the protein is calcu-
lated iteratively. In the ith iteration, the pKa of group l
is given by Eq. (21):

pKa;l�i� � pK intr
a;l ÿ

1

RT ln 10

�
XN

m�1
�Wlm�



xl�i�

�� zol�� xm�i�h i � zom �� �21�

where zol is the unitless formal charge of the group l in
the deprotonated form, i.e., )1 for acids and 0 for bases;
pK intr

a;l is given by Eq. (15). The pKa value obtained by
Eq. (21) is used in Eq. (22) to calculate the protonation
probability for the (i+1)th iteration by Eq. (22):

xl�i� 1�
 � � exp�ÿ ln 10�pHÿ pKa;l�i���
1� exp�ÿ ln 10�pHÿ pKa;l�i��� �22�

The iteration proceeds until self-consistency is reached.
In the initial iteration step, the pKa values of the titrat-
able groups are assumed to be identical with the intrinsic
pKa values pK intr

a;l [Eq. (15)]. Note that Eq. (21) uses
pK intr

a;l rather than pKa;l (i), otherwise the interaction
energy would accumulate during the iteration.

Reduced site approximation

In order to avoid unnecessary calculations of energies of
protonation states that are unlikely to occur, Bashford
and Karplus (1991) developed a method that considers
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only states that contribute considerably to the summa-
tion in Eq. (19). If the pH is far away from the pH at
which the particular group titrates in the protein, the
group is considered to have a ®xed protonation state.
This reduces the number of protonation states from 2N

to 2NÿM if the protonation of M groups is ®xed.
The groups that do not need to be considered at a

speci®c pH value are identi®ed as follows. The free
energy for adding a proton to group l adopts its
maximum value when all other groups are also proto-
nated; thus the maximum free energy is calculated with
Eq. (23):

Gmax
l � Gintr

l �
XN

m�1
Wlm zom � 1:0
ÿ � �23�

where

Gintr
a;l � ÿRT ln 10 pK intr

a;l �24�
The free energy required for protonating group l is
minimal when all other titratable groups are deproton-
ated, i.e.

Gmin
l � Gintr

l �
XN

m�1
Wlmzom �25�

At a given pH, the maximum (minimum) protonation
probability of group l is obtained from Eq. (26):

xl

 �

max�min��
exp ÿ Gmax�min�

l �RT ln 10 pH

RT

� �
1� exp ÿ Gmax�min�

l �RT ln 10 pH

RT

� � �26�

Group l is kept ®xed in its protonated form if
hxlimin > 1:0ÿ n and in its unprotonated form if
hxlimax < n; n is an adjustable, albeit small and positive,
threshold value, which should be set to 0.05 or less.
However, the protonation state of the ®xed titratable
groups in¯uences the pK intr

a;l value of the un®xed titrat-
able group l. The adequate correction is given by
Eq. (27):

pK intr;correct
a;l � pK intr

a;l ÿ
1

RT ln 10

XNfixed

m�1
Wlm�zon � fm� �27�

where fm is either one or zero according to if group m is
®xed in the unprotonated or protonated form. The
protonation probability of the titratable groups that can
vary their protonation is then calculated by Eq. (19).
The protonation state energies Gi [Eq. (17)] have to in-
clude now pK intr;correct

a;l instead of pK intr
a;l .

Hybrid statistical mechanical/Tanford-Roxby algorithm

Yang et al. (1993) developed an algorithm which com-
bines a direct evaluation of the statistical average with
the Tanford-Roxby approximation. All titratable groups
within a certain cut-o� distance of a titratable group are

treated by the direct evaluation of the statistical average,
while the titratable residues outside this cut-o� radius
are treated with the Tanford-Roxby approximation. A
cut-o� distance that gave reasonable results was 7 AÊ

(Yang et al. 1993). Alternatively, also an energy cut-o�
for the interaction energy Wlm can be used (Yang et al.
1993).

In this approach, the protonation probabilities of the
N titratable groups of a protein are calculated as fol-
lows. The statistical average is directly evaluated only
for the js groups that are within a certain cut-o� distance
of a particular group s. The remaining N ) js groups are
treated by the Tanford-Roxby approximation. The en-
ergy of the protonation substate ns of the js residues in
the ith iteration is given by Eq. (28):

Gns�i� �
Xjs

l�1
�xns

l ÿ x0sl �RT ln 10�pHÿ pK intr
l �

� 1

2

Xjs

l�1

Xjs

m�1
�Wlm�xns

l � zol��xns
m � zom ��

�
Xjs

l�1

XN

m�js�1
�Wlm�xns

l � zol�� xm�i�h i � zom �� �28�

The average protonation hxs�i� 1�i of group s in the
(i� 1)th iteration is calculated from Eq. (29):

xs�i� 1�h i �
P2js

ns�1 xns
s expÿGns�i�=RT� �P2js

ns�1 expÿGns�i�=RT� �
�29�

The same procedure is applied to all N titratable
groups. Equations (28) and (29) are iterated until self-
consistency is reached. In the ®rst iteration step, the
protonation probability hxm�1�i of the N ÿ js groups
that are outside the cut-o� distance are calculated from
Eq. (3) assuming that the pKa values of these groups
are identical with their intrinsic pKa value, pK intr

a;l , ob-
tained from Eq. (15). Alternatively, the initial pKa

values can also be obtained from the Tanford-Roxby
approximation or the solution pKa values of the cor-
responding model compounds can be used. A cut-o�
distance of 0 AÊ leads to the Tanford-Roxby approxi-
mation, while a cut-o� distance of in®nity leads to the
exact statistical mechanical treatment. For each group,
a di�erent set of titratable groups is treated by the
exact method.

A related but not identical method, the so-called
cluster method, was used by Gilson (1993). In this ap-
proach, the protein is divided into clusters of coupled
residues. The criterion for the clustering is the interac-
tion energy between the titratable groups. All groups
within a cluster are treated exactly, while the interaction
between di�erent clusters is treated by the Tanford-
Roxby approximation. Also in this approach, the
protonation probability is calculated by iterating until
self-consistency is reached. Another algorithm that uses
a similar idea was introduced by Karshiko� (1995).
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Monte Carlo titration

Beroza et al. (1991) developed a Monte Carlo (MC)
method to calculate titration curves of amino acids
within proteins. With this MC method, protonation
states are sampled with the probability with which they
occur (importance sampling). The average protonation
hxli of group l is obtained by averaging xl over the
sampled states. The MC titration method can also be
combined with the reduced site approximation (Bash-
ford and Karplus 1991) described above. This MC
method is able to calculate titration curves of proteins as
large as the photosynthetic reaction center or cyto-
chrome c oxidase (Beroza et al. 1991, 1995; Lancaster
et al. 1996; Kannt et al. 1998; Rabenstein et al.
1998a, b). An alternative MC titration algorithm that
uses a simulated annealing protocol was proposed by
Miteva et al. (1997).

Standard treatment. The initial vector~x describing the
protonation state of the protein is generated randomly.
In a MC move the protonation of a single, randomly
chosen, group l is changed. The corresponding change
in free energy DGl is obtained from Eq. (30):

DGl � Dxl ln 10RT �pHÿ pK intr
a;l � �

XN

m�1
Wlm xm � zom
ÿ � !

�30�
where Dxl � xnewl ÿ xoldl � �1 is the change in the pro-
tonation of group l. The new protonation state is ac-
cepted according to the Metropolis criterion, i.e. if
DG � 0, the protonation of group l is always changed, if
DGl > 0, the protonation of group l is changed with
probability exp�ÿDGl=RT �. A MC scan is ®nished after
N moves, i.e., after N attempts to change the protona-
tion state. After a few hundred MC scans to reach the
equilibrium, the protonation states of each scan are ac-
cumulated to evaluate the average protonation hxli of
each group l.

Treatment of strongly-coupled groups. If two titratable
groups are strongly coupled, they may have two pro-
tonation states of low energy. In the two states, one
proton is located either on the one or on the other
group. The transition from one low energy state to the
other by two subsequent MC steps involves an inter-
mediate state, which may have a high energy. Thus the
transition from one state to another may be unlikely,
as depicted in Fig. 3. The problem can be avoided if
the protonation of the two groups is switched simul-
taneously, which formally corresponds to a direct
proton exchange between these two groups. The proton
exchange step is also accepted according to the Met-
ropolis criterion. If a very low dielectric constant is
used for the protein (e � 2), even three groups may
couple strongly. Then the use of triple moves can help
to prevent sampling problems (Rabenstein et al.
1998a).

Estimation of the statistical uncertainty. To estimate
the statistical uncertainty of the MC calculation, it is
necessary to calculate the number of independent data
sets in the sample (Beroza et al. 1991). The correlation
function Cl(s) for the protonation of group l determines
a correlation time scorrl between approximately inde-
pendent values of the protonation of group l. It is given
by Eq. (31):

Cl�s� � 1

T ÿ s

XTÿsÿ1

t�0
�xl�t � s�xl�t� ÿ hxli2� �31�

where t is the time in units of one MC scan, T is the total
number of scans (or the maximum time), and s is the
time variable of the correlation function. The correlation
time scorrl is the time for which Cl(s) becomes negligible
(for instance jCl�s�j < Cl�0�=10). The number of inde-
pendent protonation values is T=scorrl . If all protonation
values are independent, the variance of one measure-
ment is Cl(0). The use of the average of T=scorrl inde-
pendent data sets provides the standard deviation rl

given in Eq. (32):

rl �
��������������
Cl�0�

T=scorrl

s
�32�

Titration curves for a protein
with multiple conformations

Calculations that consider only a single conformation
cannot be expected to predict the protonation proba-
bility correctly at each pH value, because pH-dependent
conformational changes may occur and will in¯uence
the titration behavior. Even small structural changes can
have a large in¯uence on the titration behavior. There-
fore pKa values that are far away from the pH value at
which the structure was solved are often not predicted
correctly. The methods described above should be able
to predict the protonation probabilities of titratable
groups of the protein reliably for the pH value at which
the structure was solved. The inclusion of conforma-

Fig. 3 Treatment of two strongly coupled groups in Monte Carlo
titration calculation. If the energy barrier for the transition from state
(1,0) to state (0,1) via the states (1,1) or (0,0) is too large (solid arrows),
a Monte Carlo step is performed that simultaneously switches the
protonation of both sites (dashed arrow)
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tional changes can improve the predictive power of ti-
tration calculations and even make it possible to predict
the pKa values of titratable groups in proteins that do
not titrate at the pH at which the structure was solved.
The modi®cations of the titration algorithm that are
required to account for conformational changes cor-
rectly are described in the ®rst part of this section. In the
second part, algorithms to generate di�erent confor-
mations of proteins are described. Such algorithms
turned out to be rather complicated. In fact, most of the
algorithms used so far generate protein conformations
that may bias the results as discussed by Beroza and
Case (1998).

Theoretical framework

In the following we assume, without loss of generality,
that conformations and protonation states of a protein
are independent of each other. Correlations between
conformations and protonations can be considered by
their probability of occurrence. Each titratable group
can have multiple tautomeric forms and a protein can
have many conformations. The probability of the oc-
currence of a particular conformation may be dependent
on the protonation state of the protein and thus on the
pH. A protein, which has L conformational states and N
titratable groups each with ni possible protonation forms
(protonation and tautomeric forms), possesses a total
number of �LQN

i�1 ni� states. Then the sum in Eq. (19)
would have to run over all these possible states. Al-
though a treatment allowing more than two protonation
forms for each group would in principle be possible and
straightforward in the theoretical framework presented
here, it is not commonly used. Therefore, we refer in the
following to the commonly used treatment considering
only two possible protonation forms for each group.
When L is the number of di�erent conformations and N
is the number of titratable groups, the number of pos-
sible states is then L ´ 2N if each titratable group exists
in two protonation forms.

If the protein can adopt many conformations,
Eq. (17) needs an additional energy term that accounts
for the di�erence in the energies of the conformations in
the reference protonation state. As long as this confor-
mational energy term is additive, the calculation of
titration curves with many conformations can be done
in the same framework as the calculation of titration
curves using a single conformation. The additivity is
guaranteed on the basis of the LPBE. The energy of the
conformational state l in the protonation state n is given
by Eq. (33):

Gn;l �
XN

l�1
�xn;b

l ÿ x0;ll �RT ln 10�pHÿ pK intr;l
a;l �

� �
� 1

2

XN

l�1

XN

m�1
�W l

lm�xn;l
l � zol��xn;l

m � zom �� �DGl
conf �33�

where DGl
conf � Gl

conf ÿ Gr
conf is the energy di�erence

between an arbitrarily chosen, albeit ®xed, reference
conformation r and the actual conformation l. For the
computation of DGconf the protein must be in its refer-
ence protonation state for both conformations r and l,
i.e., all titratable groups are in their uncharged proto-
nation form.

Calculation of the conformational energies

Most studies on the e�ect of conformational changes
of proteins neglect the change in solvation energy that
arises from a conformational change. A method to
account for this e�ect was developed in our group
(Ullmann 1998) and applied to the photosynthetic
reaction center (Rabenstein et al. 1998a). The energy
di�erence between two conformations arises from elec-
trostatic and non-electrostatic interactions. Electrostatic
contributions can be calculated from the numerical
solution of the LPBE. However, this numerical solution
requires us to assign the atomic partial charges on
discrete points of a cubic grid. This results in an artifact
termed grid energy. The grid energy precludes the
calculation of the conformational energies by directly
evaluating the electrostatic energy di�erence between the
two conformations connected by the thick horizontal
arrow in Fig. 4. The artifact of grid energies can,
however, be avoided by calculating the other three steps
in the thermodynamic cycle (Ullmann et al. 1997). The
energies required to transfer the protein in its reference
conformation r and its conformation l from a medium
with the dielectric constant of the protein (homogeneous
dielectric) to a medium with the dielectric constant
of water (inhomogeneous dielectric) are calculated
from the numerical solution of the LPBE as given in
Eq. (34). This process is depicted by the vertical arrows
in Fig. 4.

Gl
R �

1

2

XNp

i�1
qi;p /inhom

p rl
i ; qp

ÿ �ÿ /hom
p rl

i ; qp

ÿ �� �
�34�

The energy di�erence Gl
R represents the reaction ®eld

energy induced by the charges of the protein in the
solvent dielectric medium. In Gl

R the grid energies as well
as the Coloumb energies cancel. The atomic coordinates

Fig. 4 Thermodynamic cycle to calculate the di�erence in free energy
between two conformations of the same molecule
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rl
i for atom i refer to protein conformation l. The term

/inhom
p �rl

i ; qp� denotes the value of the numerical solution
of the LPBE at position rl

i obtained for an inhomoge-
neous dielectric medium, i.e., the value of the dielectric
constant is low and the ionic strength is zero within the
protein, while the value of the dielectric constant is high
and the ionic strength can be di�erent from zero outside
of the protein. The term /hom

p �rl
i ; qp� denotes the value

of the numerical solution of the LPBE at position ri
obtained for a homogeneous dielectric medium, i.e., the
dielectric constant adopts a low value and the ionic
strength is zero everywhere. Both electrostatic ®elds,
/hom
p �rl

i ; qp� and /inhom
p �rl

i ; qp�, were obtained from all
charges qi,p of the protein in the reference protonation
state, in which all titratable groups are in their un-
charged protonation form. The sum runs over all Np

charges qi,p of the protein. G
r
R is calculated analogously.

The di�erence in solvation energy between the reference
conformation r and conformation l is obtained by
Eq. (35):

DGl
R � Gl

R ÿ Gr
R �35�

The LPBE must be solved 2 ´ L times for the L di�erent
protein conformations in the reference protonation
state.

The energy di�erence along the upper arrow in
Fig. 4 between the reference conformation r and con-
formation l in a homogeneous dielectric medium both
in its reference protonation state is calculated analyti-
cally. Since the dielectric constants of the solute and the
medium are equal, this energy change DGl

FF is calcu-
lated with a conventional molecular mechanics force
®eld using the dielectric constant of the protein eP ev-
erywhere (Brooks and Case 1993; VaÂ squez et al. 1994),
in which also non-electrostatic interactions, i.e., van der
Waals energies and bond energies, can be taken into
account. The non-electrostatic solvation energy GNE,
which arises from non-electrostatic interactions of the
molecule with its environment, is believed to be pro-
portional to the solvent accessible surface area as shown
in Eq. (36):

DGl
NE � c�Al ÿ Ar� �36�

where Al and Ar are the solvent accessible surfaces of the
reference conformation r and conformation l respec-
tively; c is an empirically obtained parameter (Sitko�
et al. 1994b).

The total energy di�erence between conformation l
and the reference conformation r is then given by
Eq. (37):

DGl
conf � DGl

R � DGl
FF � DGl

NE �37�
This energy di�erence is used in Eq. (33) to calculate the
energy of the protein in conformation l and protonation
state n versus conformation r and the reference proto-
nation state. Within the framework of the LPBE, this
method involves no further approximation.

Approximate methods

In principle, the calculation of intrinsic pKa values
pK intr;l

a;l and the calculations of interaction energies W l
lm

are required for each of the L di�erent conformations.
Thus the LPBE needs to be solved 2 ´ L ´ N times for
the protein and also 2 ´ L ´ N times for the model
compounds in order to cancel out grid artifacts properly.
This leads to an enormous computational burden. In
order to reduce this computational burden, You and
Bashford (1995) and Beroza and Case (1996) assumed
that each of the titratable groups can adopt many con-
formations independently. If group l adopts Ml di�er-
ent conformations, the total number of conformational
states is L � QN

l�1 Ml. You and Bashford (1995) used a
mean-®eld approximation in order to calculate the in-
trinsic pKa values and the interaction energies. Beroza
and Case (1996) and Alexov and Gunner (1997) applied
a MC algorithm to determine protonation probabilities.

You and Bashford (1995) de®ned the intrinsic pKa

value as shown in Eq. (38):

pK intr
a;l � pKmodel

a;l ÿ 1

ln 10

� ln
XMl

n�1
exp�ÿDGenv;d

p;l;n =RT �
 "

ÿ ln
XMl

n�1
exp�ÿDGenv;h

p;l;n =RT �
!

ÿ ln
XMl

n�1
exp�ÿDGenv;d

m;l;n=RT �
 

ÿ ln
XMl

n�1
exp�ÿDGenv;h

m;l;n=RT �
!#

�38�

where the subscripts p and m denote that the energy was
obtained from the protein or from the model compound
respectively; n denotes a particular conformation of the
titratable group l. The superscripts h and d indicate that
environmental energy DGenv was either obtained for the
protonated (h) or deprotonated (d) state. The environ-
mental energy for group l in conformation n in the
protein in its deprotonated form Genv;d

p;l;n is given by
Eq. (39):

DGenv;d
p;l;n � Ep;l;n � DGBorn;d

p;l;n � DGback;d
p;l;n �39�

The other environmental energies are de®ned analo-
gously. Ep,l,n is the energy that is independent of the
charge state of all titratable groups and may include non-
electrostatic energy contributions. The terms DGBorn

[Eq. (40)] and DGback [Eq. (41)] represent the Born energy
and the energy that arises from the interaction with non-
titrating background charges, respectively. The meaning
of the sub- and superscripts is the same as above.

DGBorn;d
p;l;n �

1

2

XNQ;l

i�1
Qd

i;l�/p;l;n�ri; Qd
l� ÿ/unif;l;n�ri; Qd

l�� �40�
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DGback;d
p;l;n �

XNp

i�1
qi�/p;l;n�ri; Qd

l�� �41�

/unif,n is the solution of the LPBE if the dielectric is
uniform, i.e., the dielectric constant is set to ep every-
where, which is the dielectric constant of the protein.
One contribution to the energy term Ep,l,n is the change
in self-energy of the titratable group l that arises from
the conformational change of the considered titratable
group l [Eq. (42)], which may change the shape of the
protein and thus the dielectric boundary:

DGselfback
p;l;n � 1

2

XNp

i�1
qi /p;l;n ri; q� � ÿ /unif;l;n ri; q� �� � �42�

Equation (42) is, however, an approximation, since the
self-energy term does not only depend on the confor-
mation of group l, but also on the conformation of all
other groups.

The interaction energy between two groups l and m is
approximated by Eq. (43):

Wlm �
XNQ;l

i�1
�Qh

l;i ÿ Qd
l;i� /p;m ri;Qh

m

ÿ �
 �ÿ /p;m ri;Qd
m

ÿ �
 �� �
�43�

where the mean-®eld value of the electrostatic poten-
tial is

/p;m ri;Qd
m

ÿ �
 � �PMm
n�1 /p;m;n ri;Qd

m

ÿ �
exp�ÿDGenv;d

p;l;n =RT �PMm
n�1 exp�ÿDGenv;d

p;l;n =RT �
�44�

Owing to the averaging of the electrostatic potential, the
interaction matrix W is not symmetric. It will therefore
be symmetrized by �Wlm � 1

2 Wlm � Wml
ÿ �

for the titration
calculation. As already pointed out by You and Bash-
ford (1995), this approximation is inadequate for groups
that are in close contact. The so-obtained intrinsic pKa

values pK intr
a;l [Eq. (38)] and the interaction matrix �W

[Eq. (43)] are used in titration algorithms as described
before.

With this approach, the LPBE needs to be solved
4� N �PN

i�1 Ml times for the protein and 4� N �PN
i�1 Ml times for all model compounds, i.e., consider-

ably less often than the number of di�erent conforma-
tional states that exist. The disadvantage of this
approach is that correlations between protonation
changes and conformational changes of closely
neighbored titratable groups are not considered appro-
priately, as already discussed by You and Bashford
(1995). Furthermore, conformational changes of the
non-titratable groups are not considered.

Beroza and Case (1996) used a MC approach to in-
clude conformational ¯exibility into the calculation of
pKa values. They assumed that the intrinsic pKa values
pK intr;l

a;l and the interaction energies W l
lm do not depend

on the conformation of the other titratable and non-

titratable groups. Thus the LPBE needs to be solved
only 2� N �PN

i�1 Ml times for the protein and

2� N �PN
i�1 Ml times for all model compounds. This is

justi®able if the conformational changes are small, but is
not generally correct, since for instance the change of the
dielectric boundary in¯uences all electrostatic energy
terms (You and Bashford 1995; Beroza and Case 1996).
Changes in the non-electrostatic parts of the confor-
mational energy are neglected, but can be included. Also
Beroza and Case (1996) do not consider conformational
changes of non-titratable groups.

Alexov and Gunner (1997) included a non-electro-
static term in their calculations to consider di�erences in
van der Waals interactions, torsion angle energies, and
conformational changes of non-titratable groups.
However, they consider only conformational changes
involving hydrogen atoms. A term that accounts for
changes in solvation energies is neglected in their algo-
rithm. This is appropriate in that application only be-
cause they considered conformational changes of
hydrogen atoms to which an atom radius of zero was
assigned. These changes do therefore not in¯uence the
dielectric boundary and consequently also not the sol-
vation energy of the reference state. This method cannot
be applied to conformational changes in which the
protein changes its shape.

Generation of di�erent conformations

Free energy calculations using MD simulations are of-
ten used to calculate the intrinsic pKa values and inter-
action energies. Furthermore, MD simulations are
applied to generate di�erent conformations (Yang and
Honig 1993; Del Buono et al. 1994; Baptista et al. 1997;
Sandberg and Edholm 1997; Sham et al. 1997; Zhou
and Vijayakumar 1997). These approaches are the
method of choice if only the protonation or redox po-
tential of a single group is investigated (Apostolakis
et al. 1996). The use of MD simulations in multiple
group titrations is, however, problematic. To perform
MD simulations, the protonation state of the protein
has to be ®xed. Consequently the results are biased to-
wards the protonation state chosen in the MD simula-
tion. The generation of di�erent conformations by MD
simulations bear the same problem as clearly pointed
out by Wlodek et al. (1997). They performed di�erent
MD simulations of bovine pancreatic trypsin inhibitor.
The protonation of the N-terminus di�ered in these
simulations. With the equilibrated structures, titration
calculations were performed. It was found that the
protonated form of the N-terminus is stabilized in the
structure obtained from the simulation of the protein
with a protonated N-terminus, whereas the unprotona-
ted form of the N-terminus was stabilized in the struc-
ture obtained from the simulation of the protein with
the unprotonated N-terminus. This emphasizes the im-
portance of the choice of the proper protonation state
for MD simulations.
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Similar problems arise if energy minimization algo-
rithms or simulated annealing procedures are used to
generate di�erent conformations to account for the
conformational variability of proteins in titration
calculations (Bashford and Gerwert 1992; You and
Bashford 1995; Rabenstein et al. 1998a). Rabenstein
et al. (1998a) developed a method in which energy
minimizations and a protonation state determination
alternate iteratively. The initial protonation state was
assigned according to a protonation state analysis using
a dielectric constant of 4 for the protein. Fractional
protonations with the corresponding values of the
atomic partial charges were then assigned to the atoms
of the protein and an energy minimization was started.
After convergence of the minimization, the protonation
state analysis was repeated but now using a dielectric
constant of 2, since the energy minimization accounts
for nuclear polarization. Energy minimization and
protonation state determination were iterated again
until self-consistency was reached. With increasing
number of iterations, the titratable groups tend to
adopt either a fully protonated or deprotonated state.
Fractional protonations disappeared.

Beroza and Case (1996) used two local conformations
for each titratable group. One side-chain conformation
is the conformation taken from the crystal structure; the
other was the side-chain conformation that maximizes
the solvent accessibility of that side chain. With that
approach they avoid the bias introduced by energy
minimizations or molecular dynamics, but the physical
motivation for using conformations that maximize sol-
vent accessibility is not clear.

Antosiewicz et al. (1996b) calculated the pK1/2 of
several proteins whose structures were determined by
NMR spectroscopy. The pK1/2 values were determined
for di�erent structural models derived from NMR and
arithmetically averaged to compare them with experi-
mentally determined pKa values. The arithmetical aver-
aging of these pK1/2 values has, however, no physical
basis, since all considered conformations were used with
the same statistical weight. The same problem exists
when di�erent crystal structures are used in titration
calculations.

Several groups investigated the e�ect of pH on pro-
tein folding and protein denaturation. Yang and Honig
(1993) and Schaefer et al. (1997) use a two-state model
for protein folding. A MC procedure was used by
Scheraga and co-workers (Ripoll et al. 1996; Vila et al.
1998) to generate di�erent conformations. They used a
titration procedure in order to calculate the protonation
probability of the titratable groups after the MC simu-
lation was completed. Protonation changes were not
directly incorporated into the MC simulation.

The use of MC simulations has a clear advantage.
The energy function does not have to be di�erentiable.
Thus it is easily possible to introduce additional (frac-
tional) atoms or (fractional) charges, i.e. to simulate a
grant canonical ensemble. Such simulations are di�cult
or even impossible with MD simulations methods. Luo

et al. (1998) combine the generalized Born model with a
conformational search in torsion angle space. However,
in their application to HIV protease, they vary only the
torsion angle of two residues while they keep the rest of
the protein ®xed.

Proton linkage model

The proton linkage model relates the pH-induced
change of the reaction free energy to the average number
of protons D�q released from the considered molecular
system, when the reaction in the investigated pH range
occurs (Wyman 1964):

DG�pH2� ÿ DG�pH1� � RT ln 10

ZpH2

pH1

D�qdpH �45�

The proton linkage model relies on the assumption of a
two-state system and provides, in principle, an exact
method to obtain the pH dependence of the free energy.
It is, however, not possible with this method to calculate
absolute values for free energy changes unless a refer-
ence value at a given pH, i.e., an integration constant, is
available. Detailed derivations of this model are given by
several authors (Wyman 1964, 1965; Tanford 1970;
Laskowski and Finkenstadt 1972). This approach can be
used to determine the pH dependence of the free energy
of any kind of reaction, as for instance for unfolding,
association, or electron transfer reactions of proteins. It
is widely used in experimental studies. In theoretical
studies, it is also advantageous to use such approaches
because it is for instance often not possible to determine
absolute association energies or absolute protein stabil-
ities. Therefore this approach is also frequently used in
theoretical studies (Yang et al. 1993; Beroza et al. 1995;
Schaefer et al. 1997; van Vlijmen et al. 1998).

Alternative approaches to protein titrations

Although we mainly focus in this review on continuum
electrostatic methods using the LPBE, we shortly review
alternative methods. Kesvatera et al. (1996) developed a
MC method in which they used explicit ions and intro-
ducedMC steps for explicit protonation. After each tenth
movement of the mobile ions, an attempt to protonate a
titratable groups was made. By a self-consistent ®eld
approach, Dimitrov and Chrichton (1997) calculated pKa

values and the pHdependence of protein stability.Mehler
(1996) uses a screenedCoulomb potential to calculate pKa

values of proteins. This approximate approach is about
100 to 1000 times faster than ®nite di�erence LPBE ap-
proaches. Recently, several groups used the generalized
Born model to calculate pKa values of proteins and other
electrostatic properties of proteins (Jayaram et al. 1998;
Luo et al. 1998). These methods have the clear advantage
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that a conformational search can be easily included in the
calculation, as was done by Luo et al. (1998).

Applications

Reasonable agreement between calculated and measured
pKa values in proteins was obtained in several studies
(Bashford and Karplus 1990, 1991; Bashford et al. 1993;
Antosiewicz et al. 1994, 1996a; Tishmack et al. 1997;
Forsyth et al. 1998). Also the macrodipole arising from
an a-helix in¯uences the pKa values of titratable groups
(Sitko� et al. 1994a). Therefore it is important to include
all partial charges of the protein to describe the elec-
trostatics of a protein in detail.

Enzymatic mechanisms

Swaren et al. (1995) investigated with electrostatic meth-
ods the catalyticmechanism of a b-lactamase. They found
that the residue Lys73, which is frequently discussed to be
a proton acceptor for the reaction, has according to the
calculation apKa value that iswell above the physiological
pH range and is thus unlikely to be involved in the reac-
tion. Raquet et al. (1997) con®rmed these results in their
calculations and suggested the nearby residue Glu166 as
proton acceptor. Dillet et al. (1998) investigated the pKa

values of the active site cysteines of thioredoxin of Esc-
herichia coli. On the basis of their calculation they propose
a reaction mechanism for the reduction of thioredoxin.
Warshel and co-workers use an alternative method to
investigate the energetics of enzymatic reaction (for re-
view see Warshel and Russel 1984; Warshel and AÊ qvist
1991; Warshel and Papazyan 1998).

Proton transfer across membranes

Protonation events are exceptionally important for en-
ergy conducting processes in bioenergetic reactions at
membranes. Therefore, pKa calculations at these pro-
teins have received much attention. Structures for some
energy-transducing membrane proteins are available at a
reasonable quality. A number of groups computed
protonation probabilities for these proteins. In particu-
lar the bacterial photosynthetic reaction center (Beroza
et al. 1991, 1995; Lancaster et al. 1996; Rabenstein et al.
1998a, b), bacteriorhodopsin (Bashford and Gerwert
1992; Sampogna and Honig 1994; Sandberg and Ed-
holm 1997), and cytochrome c oxidase (Kannt et al.
1998) were investigated and residues that participate on
proton transfer have been proposed.

Protein-protein association

The ®rst study on the change of pKa of proteins upon
binding was done by McDonald et al. (1995) for an

antigen-antibody complex of lysozyme. They found that
the changes of pKa values due to the association can be
more than three pH units. The e�ect of ionic strength,
which was also investigated by these authors, was con-
siderably less pronounced. More recently, Gibas et al.
(1997) analyzed in detail the pH dependence of the
complexation of lysozyme with two di�erent antibodies
that recognize a very similar epitop. MacKerell et al.
(1995) combined a continuum electrostatic titration with
free energy perturbations in order to estimate the pH
dependence of the binding constant of the 2¢-GMP and
3¢-GMP to ribonuclease T1. The in¯uence of the redox
state on association constants of cytochrome f and
plastocyanin was studied by Soriano et al. (1997). In-
terestingly, the association of reduced cytochrome f and
oxidized plastocyanin is stronger than the association of
the oxidized cytochrome f and reduced plastocyanin.
This makes sense physiologically, since the electron
transfer occurs from the reduced cytochrome f to the
oxidized plastocyanin.

Redox reactions

Muegge et al. (1996) investigated the e�ects of mutations
on the redox potential of the special pair of the photo-
synthetic reaction center. Gunner et al. (1996) compared
the redox potential of equivalent cofactors in the two
similar branches of the photosynthetic reaction center.
The protein environment shifts the redox potential of the
cofactors di�erently in both branches. Because only one
of the two branches is electron transfer active, they
suggested that the di�erence of the redox potentials of
the two branches is partially responsible for this obser-
vation. Gunner and Honig (1991) determined the redox
potential of the four di�erent hemes of the cytochrome
subunit of the Rhodopseudomonas viridis photosynthetic
reaction center. They considered in their study the av-
erage protonation of the titratable groups. Soares et al.
(1997) investigated the redox-Bohr e�ect in cytochrome
c3 by continuum electrostatic methods. They performed
a titration on cytochrome c3 in di�erent redox states and
were able to identify residues that are probably respon-
sible for the redox-Bohr e�ect. However, Gunner and
Honig (1991) and Soares et al. (1997) neglected both the
dependence of the redox state and protonation state of
the protein on the solution redox potential.

Hydrogen exchange

Electrostatic methods have been used for quite a while to
interpret experimental data for hydrogen exchange.
Deleiere et al. (1987) applied the model developed by
Tanford and Kirkwood (1957) for that purpose. Re-
cently, Fogolari et al. (1998) estimated the pKa shift of
backbone amides and investigated the e�ect on the hy-
drogen exchange rates of small peptides.Multiply ionized
states of backbone atoms were neglected in these calcu-
lations, since the depronation of backbone atoms are rare
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and short-lived events. All ionization states of titratable
groups have, however, been considered explicitly.

Limitations and future developments

Techniques for including of conformational ¯exibility in
titration calculations are still under development. The
main problem remains to generate appropriate molecu-
lar ensembles at a given pH and temperature. The
methods applied so far have several shortcomings. For
instance, the chosen conformational ensemble does not
necessarily represent the protein conformational space
at the investigated pH range adequately. No confor-
mational variation of the protein backbone is currently
allowed during the computational titration. Only pre-
selected conformations can be used. The preselected
conformations should be properly partioned, i.e., none
of the conformations should be entropically or ener-
getically favored to avoid double counting, but this can
not be guaranteed generally. Apparently, molecular
dynamics or energy minimization approaches are not
suitable to reach that goal because correlations between
the protonation state and the molecular conformations
occur. During a molecular dynamics simulation, it is
impossible to change the protonation pattern discon-
tinuously. A complete free energy simulation in which
the protonation states are changed continuously is too
time consuming for proteins that have many titratable
groups. This problem does not occur with MC dynam-
ics. An e�cient o�-lattice MC dynamics method for
proteins was recently developed in our group (Knapp
and Irgens-Defregger 1991; Ho�mann and Knapp
1996a, b, 1997; Sartori et al. 1998; Ho�mann et al.
1999), and we are now working on combining this MC
dynamics with MC titration. MC dynamics will also
solve another problem which appears with structural
relaxation by energy minimization. In contrast to energy
minimization, molecular dynamics and MC dynamics
are able to overcome energy barriers. This is often nec-
essary, even if only apparently small conformational
changes are involved.
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