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Decomposing Complex Cooperative Ligand Binding into Simple Components: Connections
between Microscopic and Macroscopic Models
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Cooperative ligand-binding curves may often appear deceptively featureless, yet the underlying microscopic
models may be rather complex, and the connection between them is not intuitive. To address some of these
issues, we have extended the framework of the decoupled sites representation (DSR), previously developed
in the context of pH titration, to include cooperative ligand binding as well as multiple conformations and
multiple ligands. The extended framework is based on general thermodynamic arguments and is applicable
to both anti-cooperative and cooperative binding. It can be used to elucidate the connection between the
experimentally observed binding curves and parameters of underlying microscopic models. It is demonstrated
that any binding curve can be decomposed into simple standard components that permit a model-independent
physical interpretation in terms of noninteracting (quasi) groups. A simple mathematical form of the DSR is
proposed, that is well-suited for use in least-squares fitting of experimental binding curves; the fitting procedure
produces an integer parameter indicative of the degrees of cooperativity possible in the system. A two-site
example is worked out in detail. We demonstrate that the same macroscopic binding behavior observed
experimentally can have qualitatively different origins at the level of the underlying microscopic mechanism.
We also show that, in the absence of the microscopic model, it is not possible to draw a meaningful distinction
between non-cooperative and anti-cooperative scenarios. We define a new measure of cooperativity and show
that it is in many cases more adequate than the Hill coefficient when used to characterize complex binding
curves. The extended DSR is applied to experimental data sets on oxygen binding to carp hemoglobin at
different pHs, where the framework is used to interpret the degree of cooperativity in the system and provides
an indication as to whether specific microscopic models are applicable.

Because of its biological importance, cooperative binding has
for a long time been attracting attention in the theoretical

Binding of ligands to macromolecules is one of the most y,hemistry community. Adair was probably one of the first

important reactions in biology;

oxygen binding

and magnesium binding to RNA. Often binding of one ligand
molecule can enhance or reduce the receptor’s affinity to bind
subsequent ligand molecules. Such effects are in general referre
to as “cooperative”, and can be found in many biological

” weII_-knovyn _examples 'ndu.de to develop a quantitative model of cooperative ligand binding.
to hemoglobin, calcium binding to calmodulin, 4\ a5 hased on general thermodynamic arguments and did not
rely on any microscopic or structural details of the binding
(grocess. Much later, Monod, Wyman, and Chan§easwell

s Koshland, Nimethy, and Filmérdeveloped their treatment
of cooperative binding based on an underlying structural model.

systems. Reduction of affinity upon multiple ligand binding can Hammes and WAIpointed out that the MonoeWyman—
be attributed to the presence of an effective repulsion betweenChangeux (MWC) as well as the Koshland models were special

the ligands and is called negative cooperativity or anti-
cooperativity. Affinity enhancement due to ligand binding can

be attributed to

is called positive cooperativity or simply cooperativity. Positive
cooperativity is important for the regulation of biochemical

cases of a more general model of cooperative binding. Over
the past few decades, a great number of studies have been carried
out aimed at understanding the interaction between ligaitls
using both structure-based and phenomenological models.

In a our previous work! we discussed the complexity of

an effective attraction between the ligands and

reactions,? vyhere it leads to steep titration curves and thus 10 iy asion curves that involve more than one interacting ligand
a fast transition from the completely free to the completely and showed that any titration curve, no matter how complex,

bound state of the macromolecule as the ligand concentration
is increased. Cooperative effects are also important for enzymes
where they can increase the enzymes’ turnover ¥adssin
aspartate transcarbamylase, which was studied intensively.

can be decomposed into a linear combination of simple standard
components. These components are sigmoidal titration curves
corresponding to noninteracting quasisites; the latter are char-
acterized by their own set of binding constants and are related
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_ to the original microscopic binding sites via a linear transforma-
correspondence _may be _addressed. Email: tion The relationship between binding constants of the quasi-
sites, the original (physical) binding sites, and the standard

* University of Bayreuth. macroscopic binding constants is discussed in detail in ref 22.

10.1021/jp049961g CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/18/2004



11158 J. Phys. Chem. B, Vol. 108, No. 30, 2004 Onufriev and Ullmann

The new framework, the decoupled site representation or SR, describes titration curves in terms of equilibrium constants; the
allows us to interpret any complicated titration behavior in a second one uses the energies of micro- and macrostates. Both
model-free, thermodynamically rigorous way. The DSR is thus approaches are fully equivalent, but the notational framework
analogous to the normal-mode representation of vibrations. of the latter is more compact for molecules that can bind many
Previously, we focused on pH titration as a typical example of ligands.

anti-cooperative ligand binding. While the general arguments  The binding of a ligand L to a receptor R is described by the
used in the derivation of the DSR apply verbatim to the following basic equations

cooperative case as well, and the same mathematical formalism
holds, the presence of an effective attractive interaction between
the ligands can cause some of the quasisite binding constants
to acquire an imaginary part. One way out of this difficulty
would be to use the concept of “ghost skelith the associated ~ The square brackets denote the concentration (activity) of the
binding constants that are allowed to have an imaginary part. SPecies. The standard enerdf° of ligand binding is given
However, as we showed in our previous wdrkn the anti- by

cooperative scenario, the DSR quasisite binding constants can 1

be directly measured experimentally and are straightforwardly G°=-f"InK ()

related to the energetic parameters of the system. To treat both . _ 1 .
cooperative and anti-cooperative binding within the same with 5 = (keT) ", wherekg is the Boltzmann constant afids

framework, we have reworked the mathematical formalism of the absolute temperature. The probabiliyof finding a ligand

the DSR to accommodate the cooperative case without theasso_mated_wnh its receptor at a given chemical potentialf
o - the ligand is given by

explicit use of nonreal numbers for all the binding constants

involved. This strategy is consistent with our philosophical e AG )

conviction that a physical observable should be a purely real =

number. We will use cooperative oxygen binding to carp

hemoglobin as a test case and will show how an application of _ o p . . . .
the DSR helps to interpret experimental data and select pIausibIeWhereA = [L] = e’ is the ligand activity. This equation

microscopic models. Qescripes a §igmoida| titratiop curve with a unit.slope at its only
We begin by briefly outlining the theory of multiple ligand inflection pplnt. .In thg fol'lowmg, we call such titration curves

binding and the concept of macroscopic and microscopic binding standar_d S|gm(_)|da_1| titration curves. -

constants. We then introduce the DSR and the idea of quasisites[hgggrlr:%aggebligdggetr? gymolecule that can biNdigands of

and their binding constants. We extend the DSR framework to

the multiple conformer case and consider binding of more than K, K, Ky

one type of ligands. We introduce the notion ofj@asigroup R+NL=RL+ (N—1)L=..=RLy (4)

which is a generalization of the quasisite concept introduced ) _ o

earlier. Each quasigroup is characterized by a set of purely real The species Rlis the macrostate of the receptor withgands

binding constants analogous to macroscopic binding constantsbound. The total binding curveKLlis in general described by

We define a measure of cooperativity for each quasigroup and€d 5

show that it is superior to the Hill coefficient when used to

_[RL]

X
R+L=RL K_[R][L]

1)

_ KA
14+ e*ﬂ(GL/lL) 1+ KA

®3)

N

interpret cooperative binding curves. Furthermore, we show that KA+ 2KKA2+  +N K AN

a simple equation based on purely real numbers can be used to L 12 P I

fit experimental data to the DSR model and that an integer X(= (5)
parameter obtained automatically as a result of the least-squares B o N

fit can provide valuable information about types of cooperative 1+ KA + K KA+ o+ [ K AN

behavior possible in the system. A two-site example is worked I=
out in detail; we use this case, which permits an analytical
solution, to demonstrate that very different underlying micro-
scopic models may lead to the same phenomenological ligand-
binding behavior at the macroscopic level. The DSR helps to
unambiguously classify similar types of binding and distinguish
between qualitatively different scenarios. We apply the extended
DSR to available experimental data sets on oxygen binding to
carp hemoglobin at different pH, show how the framework can
help to interpret the various degrees of cooperativity seen in
the system, and provide an indication whether certain micro-
scopic models (such as the two-state MWC) are applicable. In
the end of the paper, we summarize our main conclusions.
Details of some of the derivations, too lengthy for the main
text, are presented in the Supporting Information.

The binding constants; aremacroscopidinding constants for
binding theith ligand to the molecule, i.e., the molecule is only
considered as a whole, and individual binding sites are not
considered explicitl}:22 In contrast to macrostates, for which
it is not specified to which sites the ligands bind, it is also
possible to definamicrostates for which this specification is
required. For each macrostate witligands bound,;{) = (NV/
(N — i)li!) different microstates can be distinguished.
Rewriting eq 5 in terms of microscopic constants requires
replacement of the macroscopic constaitsin eq 5 by
equivalent expressions based on microscopic constahiach
microstate can be characterized by a state veé¢tontxere each
componenix’ is either 0 or 1 depending on whether the site
is occupied or empty. For instance, a state of a three-site system
in which the first and the third sites are occupied and the second
one is empty is given by (101). The number of ligands bound
Basic Concepts in Multiple Ligand Binding. In this section, ~ to staten is given byp, = Y/L;X. The equilibrium between
we summarize the basic concepts in the theory of multiple ligand the microstateu (reactant state) and (product state) is given
binding and connect two different approaches which often by the microscopic equilibrium constakf. Writing eq 5 in
complement each other in theoretical studies. The first approachterms of microscopic equilibrium constants would, however,

Theory
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result in rather complicated expressions even for systems withligands of each typep, = YL, X" andq, = Y0 ™.
relatively few binding site823We therefore switch to a different  Here,G""t is the standard Gibbs free energy of the microstate
but equivalent representation, in which instead of using the when all ligand activities equal 1. In what follows, we take the
equilibrium constants that lead to a certain microstafeom reference state with free energy of zero to be the completely
the reference state, we use the standard free er@&fgy this empty state of the lowest-energy conformer. The equilibrium
microstate relative to the reference state. The standard freeproperties of the system can be calculated from its grand
energyG;, relates to the microscopic constants as given in eq 6 canonical partition function, which can be writbéfias a power
series (binding polynomial) in the ligand activitidg = e

Ge=—f"In |_| K (6) andAs = e
T R N
The product in eq 6 ranges over the equilibria that connect the 7= @ FC™ APhA G 8)
reference state with that. For example, for state (101), the Z, ; HZ‘ LS

product in eq 6 would bigds kios or equivalentlykdds koor. The

total binding curve in terms of the energies of the microstates The equilibrium occupation of the site averaged over all

is then given by eq 7 microstates is given by
N 1 T 2R 2N ot
Z p & "IAP = 2 Z Z Z X e P AP AL 9)
= =1r=1n=
XO= ) | g |
N The calculation of the cooperativity between L and S requires

Z e PEIAP an analysis o as a function of bott\s andA_; thus instead
= of the problem of finding roots of a polynomial, it leads to the
more complicated problem of finding the curves in the,(\)
The denominator in eqs 5 and 7 corresponds to the grandplane obtained from the intersectid@As,AL) = 0. The latter
canonical partition functio of the system. equation is, in general, too complex and is unlikely to lead to
The Decoupled Sites Representation for Multiple Con- a rigorous mathematical treatment that can be transparent enough
formers and More Than One Ligand. In the presence of an  to clarify the main points that follow. We therefore revert to
effective ligand-ligand interaction, titration curves of individual ~ the case of constant chemical potential of the ligand S and
ligand-binding sites in a molecule can be considerably more consider it as a parameter, which is a typical experimental
complex than those of independent sites described by a standargituation. This assumption reduces the partition function to the
sigmoidal curve. In our previous papémve introduced a novel  tractable form of the single-variable binding polynoniéi,).
framework, the decoupled site representation (DSR), that In this case, eqs 8 and 9 are polynomiald\Nti degree of only
decomposes any complicated titration behavior into simple one variableA = A, and so all the mathematical formalism
standard (sigmoidal) components. The approach maps the setleveloped in our earlier wotk applies. In particular, as was
of N interacting sites in the molecule onto a set Nf noted before, the binding polynomial eq 8 can always be
independent, noninteracting quasisites, each characterized by dactorized!8%24and so we can rewrite eq 8 as
new binding constant. From general thermodynamic arguments,
we showed that the titration curve of an individual site in the
molecule is a linear combination of standard sigmoidal titration Z= [1+AKI] (10)
curves corresponding to the quasisites. The total binding curve -

=
is the sum of these standard sigmoidal titration curves. The DSR,erek! s obtained as the negative inverse of the roots of the
allows to interpret any complicated titration behavior in a model- binding polynomial in eq 8 considerings constant. Applying

free way. _ ) ) ) the relationshipp
In this section, we generalize the DSR to include multiple

receptor conformations and allow for binding of more than one dlnz
type of ligand. A more detailed derivation of the DSR for the z L=
case of a single conformation and one type of ligand can be ! aln Ay
found in ref 21.

Consider a molecule that can addptonformations and has
N binding sites for ligand L andR sites for another type of
ligand S. Also different hydration levels of the receptor can be N N ALK
interpreted as alternative conformations of the receptor. The X=§ x0= L (12)
receptor is in equilibrium with the ligands in the surrounding ; G 1+AK
solution. Only one single ligand can bind to one site. A ligand
of type L cannot bind to a site for a ligand of type S and vice Equation 12 as well as eq 10, from which it is derived, describes
versa. The binding state of the molecule is specified by-a the binding toN noninteracting or independent sites with some
R dimensional vector™"t where each elemen{""" is 1 or 0 new binding constant&;. We call thesequasisitesto distin-
depending on whether sités occupied or empty in the given  guish them from the original, physical binding sites. The two
conformationt. The superscriph,r,t denotes the microstate sets become identical only when all ligand-binding sites are
(ligand-binding and conformational states). We assume that sitescompletely independent. Since it is a priori not known whether
from 1 toN bind ligands of type L and sites froM + 1 toN there is an effective interaction between the ligands, one cannot,
+ R bind ligands of type S. The total number of possible from the total binding curve alone, assi¢fh to a particular
microstates of the molecule i$'Z 2R x T. Each microstate is  physical site, although real-valuels are experimentally
characterized by its free ener@/"t and the number of bound  accessiblé!

N

(11)

to eq 8, one obtains for the total average occupancy of the
molecule withN ligands
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The original interacting binding sites are related to the

quasisites by a linear transformatfén

N
3= a0 (13)
J
I 14
W= T RAL (14)

where[y;s the occupancy of quasisiiethe latter is described
by a standard sigmoidal titration curve since, by construction,
quasisites do not interact with each other. An explicit repre-
sentation for the elements of the transformation méjx can

be found in our previous publicatic.

The Decoupled Sites Representation for Cooperatively
Interacting Sites. When the number of binding siteshé> 2,
there is no straightforward wéyo determine analytically the
number of real roots of the binding polynomial eq 8. Our
previous numerical analysis suggestatat, in the single ligand/

single conformer case, repulsion between ligands on different

sites is a sufficient condition for all of the roots to be purely

real. Conversely, an effective attraction between the ligands may

result in some of the roots being complex, which implies
cooperativity between the sitésCooperatie bindingmeans
that the binding of a ligand increases the affinity for subse-

quent ligand binding. Such a scenario can be interpreted as an

effective attraction between ligands. The opposite effect, i.e.,
the decrease of the ligand-binding affinity with the number of
ligands already bound, is calledhti-cooperatie binding We

call bindingnon-cooperatie if binding of a ligand has no effect
on binding of the subsequent ligands. As we will show later,
effective attraction, and therefore cooperativity, may result
from conformational transitions after ligand binding, the pres-
ence of more then one type of ligand, or attractive-s#ite
interactions.

Onufriev and Ullmann

quasisites (1< m < M). We call themplets of cooperatively
interacting quasisiteguasigroups of order nand the corre-
sponding subpolynomiajuasigroup polynomialQuasigroups

do not interact with each other since each corresponds to a factor
in the partition function. The roots of the quasigroup polynomial
are also roots of the whole binding polynomial. The constants
ijk are macroscopic binding constants of these quasigroups. It
is not a priori possible to assign a given quasigroup to a real
group of sites in the molecule. This situation is similar to the
one of quasisites which cannot a priori be assigned to real sites
in the molecule but, similar to normal modes, can include
contributions from different sites.

By application of eq 11 to eq 15, one obtains for the total
average occupancy of the molecule wiNHigands

NLKIA N KHA + 2KPKPPA?

]
[XDZJZMFK;AJF,X

- — +..+
1+ KA + KPKZA?

M
M1 MKk A M
KMA+ ..+ M |‘|k KM A

Num
Z (16)
! =ML ZMK A M
1+K; A—i—...—i—U K{"™A

Each fractional term in eq 16 involving polynomials of order
m corresponds to a polynomiahplet) factor of the same order

in the partition function in eq 15, i.e., to a quasigroup polynomial
(these polynomials are obviously the denominators in the
expression above). Since eq 16 is derived using only the basic
thermodynamic arguments, it is the most general form of the
total titration curve of a macromolecule withligand-binding
sites. Each term of orden > 1 in eq 16 describes a binding
curve with a cooperativity greater than 1 and less than or equal

In the case of cooperative binding, some of the quasisite t0 M. The specific form of the many-body cooperativity
binding constants become complex, i.e., they consist of a realSuggested by egs 15 and 16 does exist in real systems; an

and a nonzero imaginary part. For complgx fitting of the
total binding curve to eq 12, although still mathematically
possible with the use of complég anda;;, is not practical. In
addition, a physical interpretation of the complex binding
constant is problematic.

To obtain a purely real expression which would not involve
“complex binding constants”, we follow Wyman'’s strategy and
group the factors [1 AKj] in eq 8 to obtain a representation
of Zin terms of the product of lowest-degree polynomials with
real, non-negative coefficients

Ny N2

z= |‘I [1+KA] x |‘| [1 4+ KZA + KPKPAY x ... x
= =

Nu M
l_l [1+ KA + KMKPA%+ L+ ﬂ K"™AM] (15)
I _

whereN; + 2N, + ... + MNy = N. We call each of the above
polynomialsirreducible since, by construction, they cannot be
further factored into lower-degree polynomials with real, non-
negative coefficients in front okk. Therefore, by construction,
all Kj and ijk are real and positive and can be considered

binding constants in the usual sense. The partition function in

example will be presented later in this work, in the section on
cooperative oxygen binding by hemoglobin.

Using the Decoupled Sites Representation for Data Fitting.
The form of eq 16, although useful for theoretical analysis, may
become cumbersome in practical applications, such as fitting
of experimental data. One reason being that paraméiérs
Np, ..} are a priori unknown and considering all possible
combinations of them may be impractical, especially for large
values ofN. Also, using ratios of high-degree polynomials for
fitting may not be the best choice from the point of view of
numerical algorithms. To provide a simple and practical fitting
procedure, we use the fact that roots of a polynomial always
come in complex conjugate (CC) pairg= Rez+ Imzandz*
= Rez— Imz Combining such pairs in eq 10, we break up the
partition function into products oveN(— 2C) quasisites with
realK' andC pairs ReK =+ ImKj) of CC ones

N—2C C
zZ= |‘l [1+ KIA] |‘| [1+ KA1 + KAl
1= =

N—-2C C

= ” [1+KA] |‘| [1+ 2ReKA + [KI[?A?  (17)
1= =

eq 15 describes a system that can be interpreted as a system of

Nz independent quasisiteld; pairs of cooperatively interacting
quasisites, and so on upy mplets of cooperatively interacting

Applying eq 11, we obtain a purely real expression for the
total average occupancy
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N-2¢ KA c oA+ ZyjAZ

XO= + Z (18)
S (1+HKA) A1+ aA+yA°

whereKj|, oj, andy; are related to the roots of the binding
polynomial eq 8 by

o;=2ReK=—(z " +7 7

7= (ReK)” + (ImK))* =777

Just like eqs 16 or 5, eq 18 is the most general form of the
titration curve of a macromolecule witki ligand-binding sites.
Note that the Adair equatichoften used to fit multiple ligand
binding, is fully equivalent to eq 5 (for details, see the
Supporting Information). The key difference of eq 18 from eq
5 or the Adair equation is that not only c#i, o, andy; be
treated as fitting parameters but the inte@ecan as well. A
similar but not identical approach was suggested béfore.
Compared to eq 5, which is commonly used to fit ligand-binding

(19)
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cooperative appearance. The Hill coefficient, defined as the slope
of IXIAN — X0 vs the chemical potential of the ligand at
half saturationXCO = N/2, correctly indicates cooperative
behavior,nyiy > 1. One the other handhyy is much smaller
than 1 for the solid curve and can be misinterpreted as a sign
of strongly anti-cooperative behavior, which is obviously not
the case. In fact, there are two well-separated domains in this
case: cooperative, corresponding roughlyitee 0, and anti-
cooperative, wherg < 0. Use of eq 18 to fit the experimental
binding isotherms automatically eliminates these difficulties in
interpretation; the best fit yields not only a sef{#f;, Ko, ...a,

y1..4 but alsoC, which points to a degree of cooperativity
possible in the system.

The integelC can, as we shall see below, serve as a “global”
measure of cooperativity, but if one goes further and identifies
all of the constants and the quasigroups in eq 16, the degree of
cooperativity can be quantified separately for each quasigroup.
The example shown in Figure 1, representing a mixture of
cooperative and anti-cooperative regimes, points to the necessity
of such separation. A useful measure of cooperativity should
indicate how sharply a quasigroup converts from a completely
empty state to the completely filled one as ligand activity
increases. This measure is clearly connected to the maximal

curves, eq 18 has at least two advantages. First, the maximumgjope of the ligand-binding curve.

power of polynomials involved in eq 18 is 2, nidtas in eq 5,
which simplifies the fitting procedure and is less likely to result
in a numerical instability. Second, eq 18 automatically provides
some information about the degree of cooperativity of the ligand
binding. As we shall see later, this information is contained in
the paramete€, half the number of nonreal roots of the binding
polynomial. In particular ifC = 0, eq 18 reduces to the sum of

standard sigmoidal titration curves as described in our previous

work. If C > 0, the “quadratic” terms are present in eq 18.

Such a system can exhibit various degrees of cooperativity

between 1 andN.
One has to keep in mind that some of the parameteasd
yj in eq 18 can be negative in which case a straightforward

interpretation of these values as binding constants is not possible.

Once, however, eq 18 has been fitted andKhew;, y;, andC

have been determined, they can be used to obtain, via a

straightforward procedure exemplified later in the work, a set

of non-negative quasigroup constants specified in eq 16. The

latter have physical meaning as explained above.

In order to define the measure, we look at two extreme
cases: a system that binfisligands non-cooperatively tbl
identical noninteracting binding sitek (= e #(G%)

ZHOWCOOPZ (1 + KA)N
e FGi—m)
[Xnon—coodj: N n e_ﬁ(Go_”") (21)

and a system that binds ligands fully cooperatively, i.e., the
system exists only in two states: all ligands bound or no ligands
bound

Zi—coop= 1 + KA™

N e*ﬁ(Gk* Nt )

[XfullfcoorJ]: 1+ e*ﬁ(Gk*NML) (22)

The described fitting procedure is as general as the Adair The maximum slope, i.e., the slope at the inflection point, is

equation often used for fitting experimental data for cooperative
binding. However, the mathematical expression (eq 18) to which
the data are fitted is much simpler and less likely to cause

numerical problems. In addition, the DSR parameter C provides

additional information about the cooperativity of ligand binding.
A Quantitative Measure of Cooperativity. Experimental

curves that describe ligand binding are sometimes very complex,

and the widely used description in terms of Hill coefficient may
be inadequafé and even misleading. Consider for example a
set of binding isotherms depicted in Figure 1, corresponding to

given in the non-cooperative case by

0 D(HOIFCOO}J:': ﬂ_N

a system of four binding sites. Although the visual appearance By consideration of eqs 23 and 24, we propose

of the two curves is deceptively different, they both have the
same mathematical form given by eq 18 w&h= 1 (N = 4)

KIA
(1+KJA)

KyA
1+ KyA)

aA + 2yA?
1+ oA + yA?

(20)

D 7 (23)
and in the cooperative case by
2
9 Xpu—coog-_ AN (24)
ouL 4
a X
E=2 —? (25)
ﬂN 8/"L at the inflection point

as a new measure of cooperativity. For a system of two
interacting sites, this measure is fully equivalent to the Hill

indicating the presence of cooperative binding. In the case of coefficient (see Supporting Information for the formal proof),

the dashed line, the domains of anti-cooperative (standardand so it can be interpreted as the number of ligands that bind
sigmoidal terms in eq 20) and cooperative (“quadratic” term) simultaneously to one quasigroup. The definition eq 25 therefore
regimes nearly coincide, yielding a curve with a classical provides a sensible measure for the degree of cooperativity of
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-10 0 10 Figure 2. Total titration curves of a receptor with two identical ligands
B binding sites. The chemical potentjal is given in units ofkgT. The

energies for binding of the first or the second ligand to the receptor,
Figure 1. Two pOSSibIe Ilgand‘blndlng curves for a four-site SyStem. C;ilmr and Gizmr’ are the same —(10 kBT) Different scenarios are

The average total occupancy of the recefibiis depicted as a function  jjjystrated: The two sites do not interact (solid curve, non-cooperative
of the ligand chemical potential (in units &T, Su = In(A)). Both case); they interact repulsively with an energy ¢65 (dashed-dotted
curves have the same mathematical form of eq 20 witfi Gdicating curve, anti-cooperative case); they interact attractively with an energy
the presence of cooperative binding. Solid likg,= 100, K; = 100, of —5 ksT (dashed curve, cooperative case). The anti-cooperative case
o =0.02,y = 0.0002; dashed lin&} = 1,K;=1,a =1,y =0.5. can also be interpreted as non-cooperative ligand binding to binding
Note that the Hill coefficientwy < 1 for the solid curve, which can  sjtes with different binding constants. Just from the titration alone, the
be misinterpreted as the absence of cooperativity in the system. differentiation between anti-cooperative and non-cooperative ligand

binding cannot be made.

—

a quasigroup 1< = =< N. A detailed derivation of the

Coopel’ativity measurg and its relation to the Hill coefficient Receptor with Two B|nd|ng Sites and a S|ng|e Conformation.
is given in the Supporting Information. As far as the integer \ve consider a receptor that exists in a single conformation and
numberC from eq 18 is concerned, cleary = 0 in the non-  has two ligand-binding sites. The ligands bind to the free
cooperative case. In the fully cooperative ca&gy,—coop from receptor with binding energies (ﬁilntr and Gizntr_ When both

eq 22 has either zero (for evé\) or one real root (for an odd  sjtes are occupied, they interact with an enevgyThe grand

N), and soC = N/2 or C = (N — 1)/2, respectively. canonical partition functiorZ of such a system is thus given

The magnitude ofC characterizes the entire binding curve by eq 26
and serves as a “global” indicator of the possible degree of

cooperativity. In this sense, it is similar to the Hill coefficient, 7 =1+ AA + BAZ2

although we will see later tha is often a better indicator of

what microscopic models are consistent with the experimental A= e FC™ 4 o AC™

data. On the contrary, the meas®@eshould not be applied to

the total binding curve but instead to individual binding curves B = g AGIM+G" +W) (26)

of each quasigroup, i.e., a degree of cooperatiitgan be

assigned to each quasigroup. This is one fundamental aspect ifyhere as beforé\ = €. The roots ofZ = 0 from eq 26 are
whichiitis different from the Hill coefficient. The cooperativity e € = 0 in eq 18) if

= of a quasigroup of ordem can adopt values between 1 and
m.

The values of the ligand chemical potential at which the
titration curve is steep are the points where the recepigand _ )
system is most sensitive to the changes in ligand activity. At whereAG = G, — GJ". The quasisite binding constaris
such a point, a quasigroup may “respond” to the ligand and andK, are related to the parameters of the binding polynomial
switch from one binding state to another, possibly transducing Z, eq 26. This relationship can be concisely expresség, as
a signal. In the analysis of experimental data, it is therefore K, = A andKiK, = B. If eq 27 holds, the binding curve has a

W — % @InL+e% —Ina)—AG (27

important to list not only the cooperativity meas@gbut also “two-step” shape as shown in Figure 2, which indicates anti-
the chemical potential at the inflection point of the corresponding cooperative or non-cooperative binding. One typically observes
quasigroup binding curve. these types of curves in pH titration experiments where the
electrostatic repulsion between the protons result&/ir 0.
Results When the inequality eq 27 is no longer true, the two roots of

Receptor with Two Interacting Binding Sites. We now the binding polynomial are no longer re&@ € 1 in eq 18) and
illustrate how the concepts developed above can be applied tothe binding is described by a single “quadratic” term in eq 18
a receptor with two binding sites. Despite its relative simplicity, with a = A andy = B. The corresponding titration curve is
the system exhibits rich behavior and serves as a good testgiven by the dashed line in Figure 2 and represents cooperative
model. It permits an exact analytical connection between the binding. Perhaps somewhat counterintuitively, the mere presence
macroscopic binding constants on one hand and cooperativityof an attractive (V < 0) interaction between the binding sites
signatures described above and physical parameters of the undelis not sufficient to cause cooperativity. A more stringent
lying microscopic model on the other. Since the development condition is required. Figure 3 shows the regions of parameter
of a microscopic model is often the goal when a new ligand- space\V,AG) corresponding to cooperative and anti-cooperative
binding system is investigated, it is important to understand the regimes. If the binding affinities of the two sites are very
intricate connections between the two levels of description.  different, the onset of cooperativity requires a strong attractive
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Figure 4. Dependence of the cooperativity meastren the interaction
strengthw between the original (microscopic) binding sites. The curves
are drawn for severalG values representing the difference in ligand-
binding affinity between the two sites. The sign&® has no influences
on the curve, i.e., the curves f&wG and —AG are identical. Energy
units are inksT.
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b) I non- or anti-cooperative

models is not surprising. Although a one-to-one mapping is also
. not possible for the cooperative regime, there is one important
T distinction from the anti-cooperative case: the binding curve
cannot be reduced to a sum of two standard sigmoidal titration
curves in the cooperative regime. Thus, cooperative binding
Ar 7 curves cannot be interpreted as two independent sites. In the
I ] language of the DSR, the cooperative system can be described

cooperative

T T by one quasigroup capable of binding two ligands. In contrast,

0

_ AG R an anti-cooperative or non-cooperative system can be described
Figure 3. (a) Dependence of the quasisite binding constants on the py two quasisites each binding one ligand. The microscopic
interaction energyV (in ksT) between the original (microscopic) sites. origin of this important distinction is in the fact that in the

They axis gives the binding energy of a quasisite, which is obtained . ; . . .
fromyG; _ ‘im ReK). The gintrins%:ybindir?g constants arel0 kT cooperative region there must exist an (effective) attractive
and —10 ksT for the solid curve and-10 keT and —12 ksT for the interactionW < 0, betweer_l the ligands boqn_d to the two sites.
dashed curve. To the right of the bifurcation point, the two distinct ~ Now we want to quantify the cooperativity of the system
roots of the binding polynomial are purely real, and the system can be using the measur& from eq 25. TheE = 1 value separates
decoupled into two independent quasisites, each characterized by itsthe cooperative from the non-cooperative or anti-cooperative
own binding constank|. To the left of the bifurcation point, the roots regimes, the last two scenarios being indistinguishable on the

of the binding polynomial are complex, i.e., the binding is cooperative. : P ; o
This is when the two quasisites merge into one second-order quasigroupbaSIS of a binding curve alone, as discussed above, and so it is

Right at the bifurcation point the binding polynomial has 1 real root of ONly meaningful to assigiz = 1 to both. In the qualitatively
multiplicity two, the binding is no longer cooperative. (b) Line different cooperative regimeé > 1, and Figure 4 illustrates the

separating the cooperative from the anti- and non-cooperative regimes.behavior ofZ as a function oAG andW. Note that the same
The line corresponds to the equality sign in eq 27. All energies are value of= can correspond to different combinationg &iG,Wj.

given inksT units. The cooperativity discussed in this section is brought about by
interaction between them. If the physical interaction between attractive interaction between the ligands. Such an attraction
the sites is repulsivaly > 0, the cooperative regime cannot be can have various physical origins, such as for instance hydro-
reached if the receptor can only exist in a single conformation. phobic interactions or polar interactions. Attractive interaction
Another important conclusion that can be made is that the is, however, unlikely between ligands which bear a net charge
information contained in the total binding curve alone is not such as protons or metal ions, because of electrostatic repulsion.
enough to distinguish between true anti-cooperativity and non- If cooperativity is found for such species, it is caused by other
cooperativity, since both are described by the same mathematicakeffects and not by a direct ligand-ligand attraction.

form. There is no way to decide just from the dastotted curve Receptor with Two Binding Sites and Two Conformations.
in Figure 2 whether it is produced by binding to independent We now consider a receptor with two binding sites. The receptor
sites W = 0) having different intrinsic affinities to the ligand  can exist in two conformations which differ in energy G§"".

(AG = 0) or by identical AG = 0) interacting (V > 0) sites. The binding energies of the ligands in the first conformation
Both scenarios belong to the same region in Figure 3b specifiedare Gi'"" and G;" and in the second conformatid@," and

by eq 27. The separatrix line in Figure 3b corresponds to the Gié‘". The interaction between the sites \§, in the first
equality sign in eq 27. It corresponds to a set of microscopic conformation andNag in the second. The energy diagram of
modelg G",G;",W} with standard sigmoidal titration curves the system is presented in Figure 5. Despite the simplicity of
and equal quasisite binding constaKfs= K = 2B/A, as for this model, its full parameter space is fairly large. A few
instance the solid line in Figure 2. Only the po{W = 0,AG simplifying assumptions help illustrate the key points. We
= 0} on this line represents a system of two independent assume that the difference in binding free energies of the two
noninteracting sites that is truly non-cooperative. Since the two- ligands is the same in the two conformation&Gyn = AGIY
site mic;roscopic model is fully determined by three parameters = AG, and so is the interaction energy between the ligands in
{GI",Gy".W} and the macroscopic binding curve has only two the two conformationsWas = Wi = W. However, the
parameters, the absence of a one-to-one mapping between thandividual ligand-binding free energies are assumed to be
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Figure 5. Energy diagram for a receptor with two interacting
microscopic binding sites and two conformations. Empty and filled
circles represent empty and ligand-bound sites.

intr
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different in the conformations. The difference is specified by
AGy = G — GJ". With these assumptions, the partition
function is given by eq 26 with the coefficienfsand B that
are now functions of five free-energy parametgl¥, AG, W,
Geont and AGar

A=
e,ﬂelmtr + e,ﬂ(Glmtq,AG) + e,ﬂ(Glln|r+AGA1|mr+chnf) + e*ﬁ(Gl‘""+AGA1i""+AG+GC°“f)

1 + e,ﬁGcorw

@ PRGIMHAGHW) | —H(2(GI™+AGN ™) FAGHN+GEM

B= (28)

14 e,/chunf

The first three parameters determine the energetics of a singl
conformation, and the last two pertain to the differences between

the conformations.
First, consideiGe" = 0, i.e., the free energy of the receptor

is the same in both conformations without any ligands bound,

but the affinities of the ligands to the different conformations
differ. Similar to the receptor with only one conformation,
different values ofAG and W determine whether the system

behaves cooperatively or anti-cooperatively. However, the
position of the line separating the non- and anti-cooperative

regimes from the cooperative regime does depend@ﬁ’. In

€

Onufriev and Ullmann

T T T T T T T T T
non- or anti-cooperative -

non- or anti-cooperative

cooperative cooperative

intr

Al

Figure 6. Lines separating the non- or anti-cooperative regime from
the cooperative regime for a receptor that can exist in two conforma-
tions, each capable of binding two ligands. The energy difference
between the conformation&{°™) is assumed to be zero. All energies
are given inksT units. () Separatrix line for severaG,y (solid line,
—AG,; = 0 keT; dashed line~AG; = 1 keT; dashed-dotted line,
—AGyy = 2 kgT; dotted line,~AGy; = 5 ksT). The spacing between
the lines decreases with increasings',g‘f. (b) The separatrix as a

function of AGSY (for AG = 0).

AG

representation of the observed trends, we limit the quantitative
discussion to the case/ = 0 and focus on th¢ AGay,Geo"}
plane, Figure 7. The effect of nonzedwas considered above
and can be summarized as follows: attractive interactgn<(

0) always enhances cooperative binding, and strong enough

particular, the cooperative regime can now be reached even withrepyision W > 0) always leads to anti-cooperativity.

repulsive interactions between the ligands (Figure 6a). The
difference in ligand-binding free energy between the conforma-
tions acts as an effective attraction and can thus cause cooper

intr

tive binding. The qualitative similarity betweefY and AG,,

intr

The cooperativity= as a function ofAG,; and G is
shown in parts a and b of Figure 7, respectively. While the mere

daxistence of two different conformation§® = 0, is not

enough to cause cooperative binding (Figure 7c), it can enhance

in this respect does not, however, translate into their equivalencethe cooperativity caused by other factors, such as attractive

While it is always possible to achieve cooperativity via a strong
enough attractiveW < 0) interaction between the ligands, it is
not the case withAGy, (Figure 6b). A relatively small
repulsive interactionVv > kseT In 2 can overwhelm even a
hypothetically infiniteAGy; and cause anti-cooperative bind-
ing, as can be shown by simple algebraWf= 0, one can
achieve cooperativity by increasing the valueAg,;, but the
maximum cooperativitig that can be achieved in such a system
is rather small, no larger tha < 1.18. Therefore, an observed
value forE larger than 1.18 indicates thAG,; cannot be the
only cause of cooperative ligand binding. Similar to the single-

conformer cases decreases withG, which means thaAGi:f

interactions between the ligands or difference in their binding
affinity between the different conformationaG,; = 0).

Two Binding Sites for One Ligand Type Plus a Site for
Another Type of LigandNow consider a receptor that can exist
in a single conformation but has two ligand-binding sites for
ligand of type L and one binding site for ligand of type S. The
interaction energy of the ligands of type S with the ligands of
type L is Ws. This interaction is assumed to be the same for
both binding sites of type L. The second-order binding
polynomial can again be written in the form of eq 26 with

A=

alone is an even weaker cause of cooperative binding for g #C™+CsmustWs) | =GN +ACHGsustWs)) 4 o= | =fGIM+AG

nonequivalent sitesAG = 0.
Let us now explore the influence & In principle, a three-

parameter space should be considered, as cooperativity is now

a function ofW, AGZT, andGc". To make a useful graphical

1+ e PGsus

@ PRGIMHAGIWS) | (261" +AGHGs—ust2Ws1)

B= (29)

14 g PGsus)
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the ligands of type L have a higher affinity and thus could also
bind cooperatively to the receptor. This scenario is probably
realized for the Bohr effect of hemoglobin.

Cooperative binding can be realized via many different
microscopic mechanisms. Simple binding studies, although very
important and helpful, cannot provide a understanding of the
binding mechanism at a microscopic level and need to be
complemented by other studies.

The equivalence between the chemical potentiand the
conformational energyz®°n is biologically of great interest.
While conformational energy of a receptor can only be changed
by a mutation and thus is not a useful regulatory mechanism at
the level of a single organism, it is easily possible to change
the chemical potential of a ligand and thus change the degree
of cooperativity of the receptor by varying the ambient
conditions. For example, calcium concentration in cells regulates
many physiological processes, e.g., muscle contraction.

Receptor With More Than Two Binding Sites. While for
N > 2 the algebra becomes more intricate and is best treated
on a case-by-case bagi€ several general conclusions are still
worth mentioning. As in the two-site case, a fully factorizable
polynomial in the form of eq 8 with all red{; values C =0
in eq 18) represents a completely non-cooperative or anti-
cooperative case. The total binding curve is a suiN sfandard
sigmoidal titration curves.

For a system that is not fully factorizable in the above sense,
and has the highest irreducible polynomial of the ofdethe
maximum cooperativity= cannot exceedv, the maximum
possible cooperativity of quasigroup of orddr Note thatM
< 2C for evenN and thatM < 2C + 1 for oddN. No matter
20, 10, 0. 10. 20, how largeM is, even ifM = N, the cooperativity in the system

AGeonf can be as low as 1, that i,can only be infinitesimally larger

. ) . than unity. This proper n n from considerin indin
Figure 7. Cooperativity in a two-site system that can exist in two an unity s property can be seen from considering a binding

i — N
conformations. The cooperativity is measureddyntroduced in eq  PPlynomial of the formz = (1_'1" lﬁA) tee>0, YVhO_Se
25. The conformational energy difference between the two conforma- "00tS lie on a circle of radiuK e centered at{K™*,0) in
tions is G, and the difference in the intrinsic binding constants is the complex plane. For smadl the above polynomial corre-

a) 2 TN T A ativity for binding a ligand of one type can be caused by the
- ! I\ T \ T binding of a ligand of a different type, in the same way as it
18} 1 ;’ \ / “ 1 . can be induced by conformational dependence of binding.
! I i \ \ 1 One should also keep in mind that other combinations of the
w1 \ ! \ - above sketched scenarios are possible. For instance, it is possible
= ! ] ! i that the ligands of type L and type S do not interact but the
A ,‘ | ‘,| i receptor exists in two conformations. One conformation binds
o |
! | 1
i ] 1.1l

|

1

\

! ] the ligand of type S with a higher affinity. In this conformation,
1
\

-20.
10.

AGY o

-B.

AGIY. All energies are given itksT, andW is set to zero. (aE vs sponds to a system of nearly noninteracting identical sites, each
Geon' for different AGI: solid black, 3ksT; dashed black, &sT; characterized b ~ 1.

dasheedotted black, 1%T; solid red,—3 ksT; dashed red:-9 keT:; The most important general conclusions made in the previous
dashed-dotted red,~15 keT. (b) Z vs Gy for differentGe™: black, section for a two-site system remain valid in tNe> 2 case

0 keT; solid red, 1kgT; dashed red, 8sT; dashee-dotted red, 1%gT; ; i ; ;
solid blue.—1 keT: dashed blue—6 keT: dashed-dotted biue —15 and are listed below. It is impossible to infer, from apparently

ksT. (c) Two-dimensional representation®{color code) as a function _non-coqperatlve binding curves alqne, Wh_ether t_he microscopic
of G and Geort, interactions between the binding sites exist, or if the system is

composed of truly independent sites. For cooperative binding
whereGs andus are the binding affinity and chemical potential to occur, an effective microscopic interaction between the sites
of the ligand of type S and the other variables have the samemust be present. This interaction may have various origins, such
meaning as in eq 28 and Figure 5. Equation 29 becomes fully as difference in ligand-binding constants in different conforma-
equivalent to eq 28 upon substitution\y = AGKT andGs — tions qf thg recep.tor, binding of anpther type of ligand or real
us = G, This substitution maps the problem at hand onto attractive interaction between the ligands.
the already discussed problem of two ligands and a receptor Hemoglobin: A Test Case Oxygen binding to hemoglobin
with two conformations. We therefore do not discuss it further is probably the most studied of cooperative ligand-binding
here and refer the reader to the previous section. phenomena. As such, it presents a perfect test case for a novel

The case of nonattractive interaction between ligands of one approach such as DSR.

type and attraction between different types is of special interest, Historically, our understanding of oxygen binding to hemo-
as it is found in many experimental systems such as coupling globin was based on two types of models that can be broadly
between protonation and reduction(ldnd €). The cooper- defined as “phenomenological” or macroscopic and “structural”
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TABLE 1: DSR Fitting Parameters of Experimental Oxygen Binding Curves of Carp Hemoglobin at Several pH Values
DSR fitting parameters, eq 18

pH K;I. K’Z 0%} Y1 (07} V2 C MWC nmx
6.25 0.00867 0.042 0.00288 0.000205 1 no 1.34
6.61 0.0420 0.0797 —0.0190 0.00112 1 no 1.93
6.92 0.1414 0.00771 —0.0586 0.00461 2 yes 2.33
7.20 0.326 0.0287 —0.0760 0.0256 2 yes 1.82
7.35 0.540 0.140 —0.01750 0.064 2 yes 1.62
7.65 1.164 0.492 0.1302 0.211 2 yes 1.42
7.83 1.800 1.33 0.322 0.344 2 yes 1.32
8.37 1.068 2.735 0.192 0.349 1 no 1.36
9.11 3.840 4.92 1.276 0.925 1 no 1.06

a|n the DSR fitting procedure based on eq T8is treated as a discrete variab@;= 0, 1, or 2. The value that provides the best global fit to
experiment is listed. The next-to-last column indicates whether the particular binding isotherm can be described by a two-state MWC model.
Experimental data used in the fit, and the Hill coefficient for each binding curve are from ref 28.

TABLE 2: Quasigroup Binding Constants of the DSR Model in the Form of Equation 16 that Describe the Binding of Oxygen
to Carp Hemoglobin at Different pH Values?

pH guasigroup constants m = ksT In[O2]
6.25 K; = 0.0087 1 1.00 474
K3'=0.0029 Ki=0.0711 2 1.82 4.24
K; = 0.0428 1 1.00 3.15
6.61 K =0.0231 K =0.0139 K¥=0.1474 3 1.64 3.39
Ky =0.0797 1 1.00 2.54
6.92 Ki'=0.0828 Ki*=0.0486 Ki®=0.0497 Ki*=0.1780 4 2.30 2.30
7.20 Ki'=0.2504 Ki?=0.1179 K{®=0.2100 K}*=0.1190 4 1.82 1.83
7.35 Ki*=0.5240 K{*=0.3735 K$®=0.1653 Ki*=0.2800 4 1.59 131
7.65 K#=0.1303 K#=1.6193 2 1.75 0.78
K =1.1657 K¥=0.4224 2 1.09 0.36
7.83 K#=0.3228 K% = 1.0659 2 1.57 0.53
Ki'=1.8012 Ki*=0.7421 2 1.12 -0.14
8.37 Kj = 1.0684 1 1.00 —0.06
Ky =2.7351 1 1.00 -1.01
Ki'=0.1924 Ki*=1.8172 2 1.72 0.53
9.11 Kj = 3.8405 1 1.00 -1.59
Ky = 4.9218 1 1.00 -1.35
Kt =1.2777 K¥=0.7248 2 1.20 0.04

a All binding constants are real positive numbers. Also listed are the endend cooperativity measui® for each quasigroup as well as the
ligand chemical potential (last column) at which the titration curve has the steepest slope.

or microscopic. A pure example of the first type of model is no larger than two. More importantly, compared to the Adair
the Adair descriptior. The chemical mechanism proposed by equation, the DSR procedure provides more information about
PerutZ’ is an example of the second approach. The MWC the cooperativity of binding. Namely, the integer paraméer
mode? is between the two approaches; it is a phenomenological obtained as a result of the best-fit procedure is an indicator of
model based on some structure-based assumptions that limit thehe types of cooperative couplings possible in the system. The
model's conformational space (“symmetry model”). In this general restrictive conclusions that can be made fromGhe
respect, the DSR approach based on eq 18 clearly belongs tovalues can be used in building the underlying microscopic
the macroscopic models. The strength of such a very generalmodel. In particular, ifC = 0, one can assert that there must
method is in its applicability to a very broad class of systems, exist an effective interaction between the sites at the microscopic
regardless of underlying molecular mechanisms. Its advantagelevel. If C = 1, it is possible that the underlying microscopic
is in the ability to provide guidance for more specific model model has two (out of four) sites that do not interact with each
building. other, while forC = 2, this is impossible. The last column of
The oxygen binding to hemoglobin from carp is a particularly Table 1 indicates whether MWC model is an admissible
interesting test case. It is characterized by a remarkable pHdescription of the binding isotherm at the given pH. While there
dependence, which at some pH values cannot be fitted to theappears to be no clear correlation between the applicability of
MWC model. Here we use the DSR model (eq 18) to fit the the two-state MWC model and the Hill coefficieng;, there
experimental data obtained by Chien and Méyor the oxygen is a clear one-to-one correspondence with @Ghealues; forC
binding to carp hemoglobin at different pH. The fitted param- = 2 the model is admissible, and f@r< 2, it is not. The proof
eters are listed in Table 1. These parameters fit the data veryof this fact is based on the analy®isf zeros of the binding
well, which is not surprising as the framework of the DSR is polynomial corresponding to the (two-state) MWC model; it
as general as the Adair equation (see Supporting Informationwas show®-30that the latter always has two pairs of complex
for details); the latter was used in ref 28 to fit the same sets of roots. Note that no complex numbers are used in eq 18 and
experimental data. However, fitting to eq 18 is less likely to that the global indicator of cooperativit§ is automatically
present numerical problems, since it uses polynomials of degreeobtained as a fitting parameter. In practice, one performs a least-
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N

squares procedure based on eq 18 with different valu€s-of

0, 1, andN/2 (or (N — 1)/2 for an oddN) and choose€ that
corresponds to smallegt. It may so happen that two or more
x? values corresponding to consecutive value€sfcome out

to be identical, within the accuracy of the numerical procedure.
In this case, one should check if any of the denominators in eq
16 allow further factoring into a product of two linear terms
with non-negative coefficientg’, i.e., (1+ A + yiA?) = (1

+ KIA)(1 + K3A), in which case the corresponding fraction
can be reduced to a sum of two fractions, each being in the
standard sigmoidal form. The value©fshould then be reduced
by 1. The factoring is possible 'riiz — 4y; = 0, and so one
tests each paifa;,yi} for the above inequality and reduc€s

by 1 for each pair for which it holds. For example, for carp
hemoglobin at pH= 6.25,%2 corresponding t€ = 1 andC =

2 are the same, and we find that the above condition is satisfied
for one pair of{ai,yi}, and soC is 1, not 2, for this data set,
Table 1.

It is also possible that some of the fitting parameterare
negative, e.g., at pH 6.61, which means that quasigroups of
an order larger than two are present in the DSR decomposition 20
eq 18. To see this, we combine (add) the term with O with <)
other terms in the decomposition until we obtain fractions in
which the denominator polynomials have only positive coef-
ficients, i.e., become irreducible. In other words, we recast the
binding curve in the form of eq 16. It was shown befdrhat
the decomposition into irreducible polynomials is uniqueNor
< 5. Each irreducible polynomial in the denominator is the
irreducible sub-polynomial in the partition function eq 15 and 0.0kes
as such corresponds to a quasigroup introduced earlier in this
study. The real positive binding constants that characterize
quasigroups for carp hemoglobin are listed in Table 2 along
with the order of each quasigroup, i.e., the degw®f the
corresponding binding sub-polynomial. Also listed in Table 2
is the cooperativity measurg for each quasigroup and the
ligand chemical potential at which the slope of the quasigroup
binding curve reaches its maximum.

We now analyze the results presented in Tables 1 and 2 in
some detail. From the values of eith@ror Z, it follows that
carp hemoglobin binds oxygen cooperatively at all pH values ° kBTzln[OZ]
pon5|dered here. At pk _6'2,5' 8.37,and 9.11, the COOperat'\_/'ty Figure 8. Decomposition of the overall binding isotherm of carp
is the lowest, and the binding curve can be decomposed into anemoglobin into titration curves corresponding to the decoupled
second-order quasigroup plus two single quasisites (i.e., quasi-quasigroups identified by the DSR analysis. (a) AtpH$.25, the total
groups of order 1). The combined “order” 1 + 1) = 4 titration curve can be interpreted as a combination of the second-order
equals the number of binding sites, as expected. The Cooper_quasigrpup (solid line) and two indepen_dentquasi_site sites (dashed and
ativity measureE for a quasigroup is always larger than 1.0, dotted lines). (b) At pH= 7.20, the titration curve is that of a fourth-

L7 . I order quasigroup; no decoupling is possible. (c) At pH7.83, the
while itis always exactly 1.0 for a single quasisite. An example pgp jgentifies a pair second-order quasigroups characterized by

of the binding curve with the above quasigroup decomposition gitferent cooperativity measurés at different ligand concentrations.

is shown in Figure 8a. (d) At pH = 9.94, the situation is similar to a, except that the binding
At pH = 6.61, the total binding curve can be decomposed occurs in a different range of the ligand concentration.

into a third-order quasigroup plus one quasisite, i.ed-(B) =

4. The fitting to eq 18 leads 16 = 1 in this case, but since the

fitting parametent is negative, the above interpretation requires

combining the terms in eq 18 to obtain the form of eq 16. In

practice, one simply forms products of the denominators, since

these correspond to binding sub-polynomials. For18.61,

it works out as
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Only the second combination yields a polynomial that can be a
binding polynomial. The combination of the parameters that
yields all real and positive quasigroup binding constants is
unigue, as is the decomposition of the binding polynomial into
irreducible sub-polynomials. The quasigroup decomposition
contains, in itself, information that may be useful in constructing
) ' the underlying microscopic model. In the above examplef; (1
1+ oA +y,AQ+KA) = 3), the corresponding microscopic model cannot consist of
1+ 0.0607A — 0.0003942\% + 0.000089264.° completely independent sites (& 1 + 1 + 1), or a pair of
interacting sites plus two independent sitesH2 + 1), or two
2 DAy pairs of sites with no interaction outside of each pair{(2),
1+ 0y + AL+ KA) = or sites interacting in such a way that their binding polynomial
1+ 0.023A + 0.000322% + 0.0000470A° (30) cannot be factored into lower-order sub-polynomials (4).
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At pH = 6.92, 7.20, and 7.35, each binding curve is described cooperative regimes, as these can result in identical binding
by a fourth-order quasigroup, (4), consisting of four sites that curves. In general, different microscopic models can lead to
cannot be decoupled via a linear transformation (such as thethe same macroscopic behavior. Thus information in addition
DSR). In this case, one of the fitting parameterg Table 1 to binding constants is required to differentiate between different
is again negative, and so the product of the two quadratic microscopic models. However, one can differentiate from the
subpolynomials in the denominators will yield a fourth order binding constants and from the binding curves between coop-
(irreducible) binding polynomial. For each of these three pH erative and anti-cooperative ligand binding. We use the two-
values, only one cooperativity meas@ean be given because  site example to explore possible microscopic origins of (positive)
there is only one quasigroup. An example of such a curve is cooperativity, which include effective attractive interactions,
depicted in Figure 8b. changes in the receptor's conformation upon binding, and

At pH = 7.65 and 7.83, the binding curve can be decomposed binding of another type of ligand that influences the ligand
into two second-order quasigroups{22). Both quasigroups  affinity. Interestingly, the model describing the cooperativity
do not interact with each other and have different ligand sensing of binding caused by conformational changes and the one caused
abilities. For illustration, we focus on the binding curves at pH by binding of another type of ligand are mathematically
7.83, which is depicted in Figure 8c. At this pH, we have two equivalent. This finding is of significant biological interest,
quasigroups with different binding behavior. The first group because either of the two mechanisms for adjusting cooperativity
(dashed line in Figure 8c) has a higher affinity than the other can be used in biological systems depending on particular
one, i.e., it binds the ligand at a lower value of the ligand circumstances. For example, it is generally very hard, on short
chemical potential. The cooperativity of this quasigroup is time-scales and under normal physiological conditions, to
relatively low, i.e., it goes from the free to the completely filled change the conformational energy of a molecule. Under these
state via a relatively smooth transition. The second quasigroup conditions it is, however, relatively easy to change the concen-
(solid line in Figure 8c) has a lower affinity, but its cooperativity tration of another type of ligand, an effector, and thus change
is higher, i.e., it changes from the free to the completely filled the cooperativity as needed. The adjustment of the conforma-
state via a relatively sharp transition. This example shows that tional energy may come into play on longer time scales, e.g.,
it is possible to have two different quasigroups that exhibit during embryogenesis. There, chemical modifications, expres-
different cooperative behavior. In principle, even a larger affinity sion of other genes for a given receptor, or even different
difference between the quasigroups is possible. Such a behaviosplicing schemes for the receptor may lead to changes in the
may be important for sensor proteins that need to sense differentconformational energy and so regulate the cooperativity. On
levels of ligand concentration, as is believed to be the case foreven longer, evolutionary-relevant time scales, mutations may
several calcium-binding proteifi3in the last example, one can  lead to changes in cooperative patterns on the molecular level,
imagine two quasigroups sensing different levels of calcium thus allowing the species to adapt to the changes in the
concentration. Moreover, since the quasigroup cooperativity canecological environment.
differ, they can switch, with different sensitivity, between the v have also explored the usefulness of the new framework
active and the inactive forms as the ligand concentration 55 applied to the well-known test case of a highly cooperative
changes. phenomenon, oxygen binding to hemoglobin. Using available
experimental data on oxygen binding to carp hemoglobin at
different pH, we have employed the DSR to identify several
types of cooperative behavior possible in the system. Each type

In this paper, we have extended the framework of the DSR, corresp_onds toa different decomposition of the total titrqt@on
previously developed in the context of pH titration, to include CUrve into quasigroup components. These decompositions
cooperative ligand binding. To treat both cooperative and anti- indicate the limiting behavior of the system upon site decoupling
cooperative binding within the same framework, we have and can be used in building an underlying microscopic model.
reformulated the DSR in terms of physically interpretable, purely |N€ integer parameté, resulting from the DSR least-squares-
real and positive, binding constants of quasigroups. The latter fit Procedure of the experimental data, provides an indication
is a generalization of the quasisite concept for the case whenWhether of not certain microscopic models (such as the two-
two or more sites cannot be viewed as noninteracting due to State MWC model) are applicable to the given data set.
the strength of cooperative interactions between them. A  The new measure of cooperativiyintroduced in this work
quasigroup is characterized by a set of binding constants whosedescribes how sensitive a quasigroup is to the change of the
number equals the order of the quasigroup, the degree of theligand concentration. Each of the quasigroups found in the carp
corresponding irreducible binding polynomial. We have also hemoglobin system titrates at a slightly different pH and is
extended the DSR framework to include multiple conformers characterized by a different value &f As a possible practical
and more than one types of ligand. application of the above phenomenon, we note that a sensor

A particularly simple form of the DSR is proposed that is Molecule designed to have similar behavior would be particu-
well-suited for least-squares fitting of experimental binding larly sensitive to changes in the ligand concentration not just at
curves. Along with the DSR decomposition constants, the fitting one but at several values of the ligand concentration, one per
procedure automatically produces an integer parameter indicativeeach quasigroup. This type of mechanism may be realized by
of the degrees of cooperativity possible in the system. calcium-binding proteins such @100 which need to react

We have used an analytically tractable model of a receptor differently at different levels of calcium concentration.
with two binding sites to explore various cooperative regimes  The extended DSR framework, which now includes both
possible in the system, as well as the relationship between thecooperative and anti-cooperative binding on an equal footing,
macroscopic description in terms of binding isotherms and the is not an approximation and is based on very general thermo-
parameters of the underlying microscopic model. We show that dynamic arguments. It provides insights into ligand-binding
without a microscopic model it is not possible to make a phenomena and can be useful in fitting experimental data and
meaningful distinction between non-cooperative and anti- in selecting the underlying microscopic models.

Conclusions
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The software developed to perform the data analysis described (11) Haiech, J.; Klee, G. B.; Demaille, J. ®iochemistry1981, 20,

in this work is freely available at www.cs.vt.eduwnufriev.
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