Biochemistry

© Copyright 2001 by the American Chemical Society Volume 40, Number 12 March 27, 2001

New Concepts

A Novel View of pH Titration in Biomolecul€es

Alexey Onufriev, David A. Case,* and G. Matthias Ullmann

Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC-15,
La Jolla, California 92037

Receied December 1, 2000; Rised Manuscript Receéd January 31, 2001

ABSTRACT. When individual titratable sites in a molecule interact with each other, their pH titration can
be considerably more complex than that of an independent site described by the classical Henderson
Hasselbalch equation. We propose a novel framework that decomposes any complex titration behavior
into simple standard components. The approach maps the Beintéracting sites in the molecule onto

a set ofN independent, noninteracting quasi-sites, each characterized Ky\alpe. The titration curve

of an individual site in the molecule is a weighted sum of Henderstasselbalch curves corresponding

to the quasi-sites. The total protonation curve is the unweighted sum of these Hendéasselbalch
curves. We show thatij, values correspond to deprotonation constants available from methods that can
be used to assess total proton uptake or release, and establish their connection to protonation curves of
individual residues obtained by NMR or infrared spectroscopy. The new framework is tested on a small
molecule diethylenetriaminepentaacetate (DTPA) exhibiting nonmonotonic titration curves, where it gives
an excellent fit to experimental data. We demonstrate that the titration curve of a site in a group of interacting
sites can be accurately reconstructed, if titration curves of the other sites are known. The application of
the new framework to the protein rubredoxin demonstrates its usefulness in calculating and interpreting
complicated titration curves.

The protonation state of acidic and basic sites is of greatas a whole. The two classes of methods provide different
importance for biomolecular function, and much effort has information but are complementary to each other.
therefore been spent to understand the pH titration of The protonation probabilitix[of an isolated site is given
biomolecules1—12). Several methods exist for determining by eq 1 below, algebraically equivalent to the Hendetson
titration curves experimentally. Methods such as nuclear Hasselbalch (HH)equation describing sigmoidal standard
magnetic resonance or infrared spectroscopy can be used tditration curves 12):
determine the titration curves of individual sites. Other
methods such as potentiometry, the assessment of proton 10PKaPH
uptake or release, or the measurement of the pH dependence L= 1 L 4 PKa—pH (1)

. L 1+ 10
of free energy changes describe the titration of the molecule
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However, titration curves of individual sites in biomolecules N
often have nonsigmoidal shapes due to interactions between Z= Z exp—pGHA" 2
sites within the molecule. By analogy to sigmoidal HH

curves, the pH values at which the protonation probabilities _ ) .
of these sites ard,, so-called [ values, are often used Where = (kT)™%. The equilibrium protonation of sité
to describe the titration behavior in such cases. However, 2veraged over all microstates is given by
these K12 values are not directly related to the free energy N
of proton uptake, as we will show later. In cases when the 3 [= 1 oK exp(_ﬁGk)An 3)
titration curves are not monotonicKp, values can even be ZZ '
ill-defined (13, 14).

In this paper, we describe a general framework that In the special case of noninteracting sites, the free energy
describes complicated titration behavior in a simple manner. of microstatex can be written as
We call this framework the decoupled sites representation
(DSR). The DSR has some analogy to the normal-mode K 1 N K
analysis in classical mechanics. Complicated titration curves G=—f"In 1OZXi PRy (4)
of original interacting sites are represented as a weighted !

sum of HH curves describing decoupled quasi-sites. The totalThis additive property allows one to group terms in eq 2

average protonation of the molecule exactly equals the sSumgnq rewrite the partition function of tHé-site system in the
of HH curves of the quasi-sites, even when the titration ¢y of a product 15):

curves of original sites show a nonstandard shape. The DSR

connects the titration of original sites and the energetics of N N

protonation reactions. The DSR is not an approximation. If Z= |_|(1 + A10P) = |_|

the number of proton binding sites is known, it provides a [ [

general description and model-free analysis of titration

behavior of biomolecules. whereK; (=10 P%a) is the deprotonation constant of site
The paper has the following structure. First, we give the |N€ average protonatiomlof each site is then given by

derivation of the DSR using basic thermodynamic principles. the HH titration curve

Second, we apply the DSR to three different systems. A 1 PKarPH A

system of two interacting sites is used to explain the B! =

principles of this new framework. Then we apply the DSR 1+ 10K PH K+ A

to fit the experimental data of diethylenetriaminepentaacetate

(DTPA), which exhibits highly unusual titration curves. We and the total average protonation of the molecule is just the

compare the DSR in this context to a different, widely used sum of individual HH curves:

model @) that assumes pairwise interactions among sites.

Finally, we apply the DSR to the protein rubredoxin and

demonstrate its usefulness in interpreting titration curves of

biomolecules.

142 (5)
K

(6)

N N ld)Kaj_PH
XO=H o= ———— (7)
. 1+ 1P PH

When sites interact, the additive property (eq 4) does not
hold, andXOand [(XOare no longer given by the simple

Consider a macromolecule with proton-binding sites in ~ formulas egs 6 and 7. However, by analogy with normal-
equilibrium with protons in the surrounding solution. Each mode analysis in classical mechanics, one can expect to
site is capable of binding one proton, and its protonation decouple the interacting sites and recover the simplicity of
state is specified by, wherex, = 1 or 0 depending on  €4s 6 and 7 by an appropriate linear transformation. We are,
whether sitei is occupied or empty. The total number of therefore, seeking the linear transformat{at} — {y*} that
possible protonation microstates of the moleculeNsahd ~ describes the occupancy of independent quasi-sites:
a microstate can be conveniently represented byNan N
dimensional vectork = (x, x5, ..., x%). The superscript k % (= Zaij@’jm (8)

]

Derivation of the Decoupled Sites Representation

denotes the microstate. Each microstate is characterized

by its free energyG* and the number of bound protons

(=ziN )g-k). Note that only two microstates are uniquely Later in this section, we determine the elements of the
specified by the number of bound protons: the fully occupied transformation matriXa;} explicitly, which proves that this
state (1,1,...,1) witlm = N and the completely empty state transformation is always possible. Out of tRex N entries
(0,0,...,0) withn = 0. In what follows, we take the latter to  of this matrix, only N — 1)? are independent, since tha;}

be the reference state with a free ene@y of 0. The values have to satisfy

equilibrium properties of the system can be calculated from
its grand canonical partition function, which can be written 3 The total average number of protons occupying all of the original
(3, 15) as a power series (binding polynomial) in the ligand sites must equal the total average number of protons on new quasi-
activity A = 107PH: sites (0= 3}'3D. Substituting(X from eq 8 into the left-hand
side of the above equality, we obtaji}'s ' a¥0= 3'§jOwhich is
possible if and only if the first constraint in eq 9 holds. The other

2 Gkis the standard Gibbs free energy of microstate k when the proton constraint is determined by considering the average protonation in the
activity equals 1. limit of extreme low pH: BxO0= ;0= 1 for all i andj values.
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N N N
Yay=15a=1 © §o= E(Alo"Kéi + 1\2;10"'<~5u'“"<f’1k +
T ] Z ,N )
Sin_ce the new quasi-si_tes are, by .definition, noninteracting, AS zlooKéj+D*<ék+pKém +..) (12)
their average protonatiorig;Care given by the HH curves K 11
(eq 6) with a set of new deprotonation constal{sthat k=]
replacekK;. In the new basis, the partition function (eq 2) o . _ .
takes the form of eq 5: Substitutingly;(from eq 12 into the right-hand side of eq 8,

using expression eq 3 fdx[Jon the left-hand side, and

N A equating coefficients in front of the same powersAgfwe
Z= |_| 1+ P (10) arrive atN systems oN linear equations foey;:
J ]
_ I
As has been noted before, the binding polynomial can always e /et
be factorized &, 16), so we can rewrite eq 2 in the form of N _sGiin)
o Foli.

eq 10 whereK! values are the negatives of the roots of the
partition function (eq 2). When the number of binding sites |{' =
N is greater than 2, there is no straightforward way to g Pelipa
determine analytically the number of real roots of the binding |&; &
polynomial (eq 2) 8). Our numerical analysis suggests that | & .
repulsion between ligands on different sites is a sufficient ! : TER

condition for all of the roots to be purely real. Conversely, 1076 I 10Pke2

an effective attractichbetween the ligands may result in N N

some of the roots being complex, which implies positive 1076t PRax 1Pz PKax IEN

cooperativity between the sites, such that the binding of a |& kZ; a,
N

ligand increases the affinity for subsequent ligand binding. NN o N L .
The opposite effect, i.e., the decrease in the ligand binding | > Zlda&'ﬁp&wp&‘m > Zloo&"ﬁp&ﬁp&m a1:3
affinity with the number of ligands already bound, is called |} K = )
anticooperativity. Although the mathematical formalism : : .
developed here applies verbatim to positive cooperative | i |
binding, we will consider this case in detail in a separate (13)
paper. Because protons are charged, they usually bind

anticooperatively. Cooperativity is an unlikely scenario when \wnere we identifyG{i,p,q,..} as the free energy of a
protons are the only type of ligand, the situation with which - microstate in which only original sites p, g, ..., are

we are concerned in this work. Note that since all the yrgtonated and others empty. There are a total sfstems
coefficients of the binding polynomial (eq 2) are positive, (eq 13), one for everiyvalue from 1 toN. Each of them has

its real roots can only be negative. The correspon®hg o niqué solution which we find numericallyl(?). As we
values are therefore real positive numbers and may behave already mentioned, onlji(— 1)? out of N2 matrix

regarded as deprotonation constants of quasi-sites. Sinceelements{ai-} are independent, and we us& 2 1

quaS|—S|tes are nonmtgractmg, the tota] average prOton""t'onconstraints ](eq 9) to check the ,numerical accuracy of the

is the sum of HH titration curves described by a set of new . . ,
calculations. The resulting set of parametga Ki} com-

deprotonation constank§. In this sense, it is meaningful to . .. .
b g pletely defines the new quasi-sites and the transformation

describe thé\-site molecule in terms dfl independent sites, . L _ .
each capable of taking only one proton. The free enar@y matrix to the original sites. The description of macromolecule
titration in terms of quasi-sites is as general as the statistical

required to fully protonate the molecBlat a given pH can : o _
be expressed as a sum of contributions from each quasi-sitd"€chanical description provided by eq 3.
(eq 11), where K;; = —log K;

Applications of the Decoupled Sites Representation

N
AG = —[3_1 In 1OZ(DK31 — pH) (11) In the previous section, we have shown that for a molecule
T with N interacting titratable sites, the average protonation
of a site and the total average protonation of the molecule

The entries of the transformation matrif@;} can be )are always given by

determined from eq 8. We use the general expression (eq 3
for the average protonation of a quasi-sitgf= (1/2)25N

i — BGKYAN i ; 5Wyman showed that the free energy required to fully protonate
)}J( exp(—fG)A] and the noninteracting form (eq 4) for the the macromolecule at unit ligand activityG = kT In A, whereAp

free energy of a m'E"OState in terms of quasi-site occupanciesis the mean ligand activity2d). This connects quasi-sites with
(Gk=—p"1In 103 yJk pKy;)- Grouping together the terms Ay —In 1021N Py = In A
corresponding to = 1, 2, ..., total protons bound, we obtain ¢ Equation 13 has a unique solution providing the determinant of
the matrix is not equal to zero. The determinant can become zero if
Kam = Kik for a pair of m and k values. The system is then

4 Effective attraction may result from conformational transitions degenerate, which means that scapean be chosen arbitrarily subject
during titration, the presence of more then one type of ligand, or to the constraints (eq 9). In practice, the degeneracy is lifted by site
nonelectrostatic sitesite interactions. site interactions.
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N 103'%1 pH
= Z ——— (14)
T 1+ 10PKaiPH
N N 1d)KﬁJ pH
L= (15)
Z le + 10P%iPH

where [K; values are the K, values of a set ofN
noninteracting quasi-sites connected to the original interacting
sites by a linear transformation defined b (— 1)°
independent coefficientsa;}. A set of K anda; can be
used as independent parameters to interpret titration data in
a model-free way.

Two Interacting SitesThe principles of the DSR can be
illustrated by a simple example. Suppose that the free energy
GX of a protonation stat&* can be written in terms of 0.56 0.44
contributions that arise from protonation and those arising I)K ( ) { u} = ( 0.44  0.56 )
from pairwise interactions between the titratable groups: ' ’

Ficure 1: Titration curves of two interacting sites. The two sites
intr

have K, values of 7.0 and 7.1, and interact witth, = 3 kcal/
=—f"tIn :|-OZXI metr + - ZZ W (16) mol. The titration curves of the original sites are shown with red
] lines. Note that the iy, values of these curves (5.5 and 6.5) do
not correspond to the two inflection points of the total protonation
where p<|ntr is the intrinsic K. value, i.e., the I, value curve (black line). The decoupled sites representation gives two

this site would have if all other titratable sites were in the independent quasi-sites withKp values of 4.6 and 7.4 (cyan
lines). These numbers coincide with the apparelf palues

reference state, anwii ,'S th,e Interaction betwe.en the approximately given by the inflection points of the total protonation
protonated forms of siteisandj. The free energg* in eq curve. The individual titration curves of the original interacting sites
16 can then be used in eq 3 to calculate the protonation (red lines) can be reconstructed from the standard titration curves
probability of each site4—6). WhenN > 2, eq 16 isnot ~ 0f the quasi-sites (cyan lines) via eq 14 using mafay . Both
the most general model. Eggligaﬂn%r;d the cyan curves sum to the same total titration curve
The interaction between just two sites is enough to cause '
complicated titration behaviol g, 19). Let us assume that  2a) which is one of the simplest systems that exhibit strongly
the pK'"" values of the sites are 7.0 and 7.1. They interact nonmonotonic titration. The experimentally measured ap-
with an energyW, of 3.0 kcal/mol, which is reasonable for parent (X, values 20) of the total titration curve of the
strongly interacting sites in proteins. Figure 1 shows the system are 1.8, 2.5, 4.4, 8.8, and 10.4. At pi3, DTPA is
titration behavior of this system. Application of the DSR in completely deprotonated. The chemical shift of the hydrogens

this case involves two steps. We first use the seB'f to bound to the carbons next to the nitrogens in DTPA has also
construct the binding polynomial (eq 2) and find its roots to been measured in the pH range from 3 to 13)( In
obtain the quasi-siteif}; values. We then solve thg = 2 agreement with experiment&1), we assume that only the

sets of linear equations eq 13 to obtdia;}. The system nitrogen sites titrate in this pH range, that they are totally
can be described by two quasi-sites havirj, palues of protonated at pH 3, and that the chemical shifts relate linearly
4.6 and 7.4. The total protonation curve exactly coincides to the protonation probabilities shown in Figure 2. Because
with the sum of the two HH curves corresponding to the the molecule is symmetric, the two terminal nitrogens cannot
noninteracting quasi-sites, and we identify these quasi-sitebe distinguished and their titration is given by a single curve.
pKis with the apparent Ky values. The latter can be Two different approaches can be used to fit the experi-
measured experimentally, and are, to a good approximation,mental data.
given by the inflection points of the total protonation curve. (1) We fit the experimental data for the individual sites to
The Ky, values of the original sites, 5.5 and 6.5, clearly do the DSR (eq 14). Because of the symmetry of the molecule
not correspond to the appareri;s. The energetics of the and the conditions in eq 9, there are thré€,pvalues and
system, described by the total protonation curve, is not well two &; values available for simultaneous fitting. The remain-
represented by these twdp, values, and thelKis of the ing a; values can be obtained from eq 9 and from symmetry
quasi-sites can be used to calculate the free energy ofrelations. The best fit gives the following valuesK;p =
protonation of the molecule at each pH (eq 11). The 4.6, K,,= 8.8, K, ;= 10.2,a;; = 0.74, anda;, = —0.62.
individual titration curves of the two original sites can be The [K}; values agree well with the measureld,pvalues.
reconstructed from the titration curves of the quasi-sites via As one can see from the solid lines in Figure 2b, the DSR
eq 14 using matria;} (Figure 1). For instance, when fits the experimental data excellently. Another choice would
pH = pK,, = 7.4, the first quasi-site ({,; = 4.6) is be to fit the total titration curve to eq 15 to obtain thi€;p
practically unoccupied, the second one is half-protonated, values, and subsequently to fit the;} using those I;;
and therefore the probability of finding the proton on each values. This yields the following values:Kp, = 4.6,
of the original sites i#/, x 0.56 and/, x 0.44, respectively.  pK,, = 9.0, K, ;= 10.2,a; = 0.74, anda;, = —0.68.
Titration of DTPA We apply the DSR to analyze titration Thls fitting procedure is much easier and faster and still
of three nitrogen atoms in small molecule DTPA (Figure provides an excellent fit.
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are possible. First, eq 16 relies on the assumption that the
free energy of a protonation state can be decomposed into
N——CH,—CH;—N—CH,— CH;—N energy terms that account for the proton binding and for the
] pairwise interaction between the proton binding sites. Such
T0L—CH, CH,—CO, a pairwise decomposition is not always possible, especially
since the titrating nitrogens in DTPA are separated by only
b) 3 : : , , two carbons. Second, eq 16 assumes that the molecule adopts
a single conformation throughout the whole pH range. The
D DSR does not use any particular assumptions for calculating
o the free energy of the microstates. It is thus general and useful
o | ®e | for fitting experimental data in a “model-free” fashion.

\e Encouraged by the finding that the DSR fits the titration
curves of DTPA very well, we go one step further. We take
2 the seemingly less-structured titration curve of one of the
13 . two terminal nitrogens, i.e., the cyan curve in Figure 2b, and
AN fit this curve to the DSR. We again obtain a fit yielding a
N - similar parameter set as in the case when we use both titration
R v .. g ~ curves: [K,,= 4.4, K,,= 8.7, K, ;= 10.1,a; = 0.84,
0 : : : anda;; = —0.48. Using this fit, we are able to reconstruct
the titration curve of the central nitrogen, i.e., the red curve
in Figure 2b. The resulting curves are shown by the long-
dashed curves in Figure 2b. These results demonstrate that
it is possible to reconstruct the unknown titration curve of a
site from the known curves of the sites that interact with the
site of interest.

Titration of RubredoxinTo illustrate the application of
the DSR to proteins, we applied it to rubredoxin, which has
54 amino acids of which 20 are titratable. Because this
protein is small and highly charged, all residues interact
strongly with each other. We use eq 16, which relies on the
decomposition of energy contributions into protonation
energies and interaction energies, to compute free energies
G¥ of the microstates. This decomposition is possible in linear
theories such as the linearized Poiss@oltzmann equation
(22). The K values and the interaction energh are

a
estimated by solving the linearized Poiss@oltzmann

FIGURE 2: () Structural formula of diethylenetriaminepentaacetate €guation using the same parameters as in previous applica-
(DTPA). (b) Fitting the titration curves of DTPA to the decoupled tions 23). We apply the DSR following the procedures used

sites representation (eq 14). The experimental data are representegh the two-site example, i.e., first find the roots of the binding

by discrete symbols, and the results of the DSR fit are given by . . intr . .
lines. The colors represent the following protonation probabilities; Pelynomial using the i§,” values and the interaction

red, middle nitrogen; cyan, terminal nitrogens; and black, total. Solid enefgiGSV\/ij and t.hen compute the coefficien{s;} by
lines represent a simultaneous DSR fit to the two individual titration solving N sets of linear equations.

curves. For the long-dashed curves, only the data of the terminal : o : .
nitrogens are used (?:yan diamonds). ’The)élecoupled sites representa- Figure 3 shows the titration of four residues of rubredoxm_
tion describes the titration of DTPA very well. (c) Fitting the ~computed by the DSR. Whereas the shapes of the curves in
titration curves of DTPA to eqs 3 and 16. The coloring is the same Figure 3a are sigmoidal and resemble HH curves closely,
as for panel b. Although the model describes the general shape ofthe shapes of those in Figure 3b clearly deviate from HH
the curves, it fails to reproduce the experimental data correctly over ,ves. Table 1 lists the expansion coefficieasused in
the entire range of pH values. : g . .
, eq 14 for constructing the titration curves using quasi-site

(2) As an alternative, we could apply the commonly used pK;, values. The N-terminus of the protein has only two
model based on egs 3 and 16, where we vat)rand W quasi-sites contributing significantly to its titration. The
for the best fit. Because of the symmetry of the molecule, pk: values of these two quasi-sites are similar, as are all the
there are only two i values and twol; values. We  pK’ values that have large contributions to the titration of
obtain the following values for the best fit: K§7 = Glu50. Therefore, the titrations in Figure 3a do not deviate
pKI3 = 10.7, K's = 11.2,Wi, = 2.2 kcal/mol, andVis = much from HH curves. Since the contributing(pvalues
W,3 = 4.4 kcal/mol. The results are shown in Figure 2c. are notidentical, the titration curves are somewhat flattened.
Although the general features of the titration curves can be On the contrary, the titration curves of Glu53 and Glu54
represented by the model based on eqs 3 and 16, it fails toare clearly not of HH shape. Both residues have many quasi-
reproduce the experimental data correctly over the entire pHsites with very different i, values contributing to their
range. titration. For example, Glu53 has large contributions from

Why does the DSR fit the experimental data better than quasi-sites with i}, values of~5 and~8. Accordingly, the
the widely used model based on eq 16? Two explanationstitration curve of this residue has two distinctive steps, one

a) ~0,6—CH, CH;— CO; H;/— cO,

x>
e’
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a) 1 ' Table 1: Expansion Coefficients an&pValues for the Decoupled
Sites Representation of Four Representative Residues in
0.8 Rubredoxif
N-terminus Glu50 Glu53 Glu54
pKl/z = 7.9, pK1/2 = 4.7, pKl/z = 5.3, pKl/z = 3.6,
0.6 - n=0.92 n=0.82 n=0.49 n=0.57
9 ayj PKS,; & PK,; s PK3 &y PK,;
04} 0.774 7.7 0.176 51 0.263 51 0.514 3.9
0.219 84 0173 45 0.196 8.4  0.297 11
0.161 4.4 0.112 7.7 0.043 4.4
0.2t 1 0.126 4.2 0.080 3.9 0.043 4.2
0.113 5.4  0.073 5.4 0.036 45
0.098 47 0.071 4.2 0.027 4.7
0 0.097 4.9 0.067 4.4 0.022 5.1
0 8 10 0.046 3.9 0049 49 0017 49
0.004 3.2 0.048 45
0.028 47

aThe Ky value and the Hill coefficient that are often used to
describe titration curves are given at the top. We list only those
M =< Ng; coefficients and I, values that are required for reconstruct-
ing the titration curves within 1% error from the exact result. Thus,
the protonation of a residue is approximated here Byl ~
3" a[10PPTY(1 + 10°"47P)]. To reconstruct the curves exactly, all
N coefficients are needed.

this, one can clearly benefit from using the DSR for
interpreting titration curves.

These examples show that the DSR can help to analyze
and rationalize the titration curves. Residues with titration
curves that have a sigmoidal shape but are flattened compared
to HH curves have contributions from several quasi-sites with
about the samelf, values. The larger the deviation be-
Ficure 3: Titration curves of selected residues in rubredoxin tween the [ values of the contributing quasi-sites is, the
representing two different types of titration behavior. The corre- flatter the titration curve is. Residues with stepwise titration

sponding K, values and expansion coefficiets;} are given in . o . .
Table 1. The titration curves of the original sites are represented curves are described by quasi-sites with very differefi p

by black dashed lines. Their approximations by Henderson Vvalues.
Hasselbalch (eq 6) and Hill (eq 17) equations are represented by )
cyan and red solid lines, respectively. The correspondiig,p  Conclusions

values and Hill coefficients are listed in Table 1. (a) Titration curves .
that have a sigmoidal shape but are somewhat flattened out We have introduced a novel framework, the decoupled

compared to a standard Hendersétasselbalch curve and are  sites representation (DSR), for calculating, describing, and
closely approximated by the Hill equation. (b) Two-step titration interpreting complex titration curves of molecules. The
c#r\é_et?.tl_f EU?SI-?Itels \‘Q"tht'\t/ret[y (rillfferrenK%}%allrjesri:qgtrlrbLéTe ftrom framework represents the titration of a molecule with
E)o(?[hI tﬁeIO Hgngefs%ﬂﬂgéslelgallﬁ:hanvdesHilll ?ofncw)ssiirfdae%hitgt interaptjng sites as the titration of a systen‘l\bﬁecou_plt_ad
multiple steps. quasi-sites. We show that th&pvalues of the quasi-sites
are directly related to the roots of the grand canonical
at pH~5, the other at pH-8. Glu54 has contributions from  partition function. The quasi-sites are independent, and their
quasi-sites with K, values of~1 and~4, and its titration  titration is therefore described by the Hendersétassel-
curve also has two steps. balch (HH) equation. The total protonation of the molecule
When a titration curve deviates from the HH form, it is is always given by the sum of the HH curves corresponding
often customary to describe it by the Hill equation (12), to the quasi-sites. Hence, no matter how complicated the
where n is the Hill coefficient reflecting the degree of titration behavior of individual sites may be, methods that

cooperativity between the sites. can be used to assess overall proton uptake or release always
(oK) lead to a sum of HH curves (as long as protons do not bind
S 1QMPP (17) cooperatively, i.e., the binding polynomial has only real

1 + 1Q"PKwz=PH) roots). Therefore, by looking at the total titration curve, one
cannot conclude if the original sites interact.

While the shape of the titration curves of Glu50 and the  Furthermore, we find from our formalism that the titration
N-terminus in Figure 3a is virtually identical to that of the curve of each original site can be represented by a weighted
Hill equation = 0.92 and 0.82, respectively), the titration sum of the HH curves describing the quasi-sites. The DSR
curves of Glu54 and GIlu53 in Figure 3b are poorly connects titration curves measured by NMR with titration
approximated by it. The corresponding Hill coefficients, 0.49 curves measured by potentiometry as demonstrated in the
and 0.57, are considerably less than 1, indicating strongcase of DTPA. To discuss the energetics of chemical
anticooperative binding in this case. In situations such as processes based on proton uptake, one should e p
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values, not th&,, values of titration curves of original sites
as is often done in the literature. The DSR provides a
connection between the titration of the whole molecule, the
titration of its sites, and the energetics of the protonation
process.

Analysis of the framework allows us to draw a humber of
general conclusions. If the titration curve of a certain site
has an unusual shape, it must interact with at least one other
site in the molecule. However, the converse is not true:. If
a measured titration curve of a site has the HH form, one
still cannotstraightforwardly conclude that only a single site
is responsible for this behavior as can be seen from our
calculation on rubredoxin. Nonmonotonic titration curves,
such as that of the central nitrogen in DTPA, indicate that
this site is interacting with at least two more titratable sites.
Even if titration curves of the original sites are nonmonotonic,
the titration curve of the whole molecule is always monotonic
since it is a sum of HH curves representing noninteracting
quasi-sites.

In the applications, we have shown that the DSR is able
to fit even very complicated titration curves. Moreover, we
show that it is possible to reconstruct the unknown titration
curve of a site from the known curves of the sites that interact
with the site of interest. This is particularly interesting if
the protonation behavior of one site is not easily accessible
experimentally. The application of the DSR to the rubredoxin
illustrates the use of the novel framework for discussing and
interpreting complicated titration curves of biomolecules.

The DSR is not an approximation. It is as general as the
most general thermodynamic description, but provides new
insights into the titration behavior of biomolecules. This
theory is generally applicable to binding and not restricted
to protons as ligands.
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