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ABSTRACT: When individual titratable sites in a molecule interact with each other, their pH titration can
be considerably more complex than that of an independent site described by the classical Henderson-
Hasselbalch equation. We propose a novel framework that decomposes any complex titration behavior
into simple standard components. The approach maps the set ofN interacting sites in the molecule onto
a set ofN independent, noninteracting quasi-sites, each characterized by a pK′a value. The titration curve
of an individual site in the molecule is a weighted sum of Henderson-Hasselbalch curves corresponding
to the quasi-sites. The total protonation curve is the unweighted sum of these Henderson-Hasselbalch
curves. We show that pK′a values correspond to deprotonation constants available from methods that can
be used to assess total proton uptake or release, and establish their connection to protonation curves of
individual residues obtained by NMR or infrared spectroscopy. The new framework is tested on a small
molecule diethylenetriaminepentaacetate (DTPA) exhibiting nonmonotonic titration curves, where it gives
an excellent fit to experimental data. We demonstrate that the titration curve of a site in a group of interacting
sites can be accurately reconstructed, if titration curves of the other sites are known. The application of
the new framework to the protein rubredoxin demonstrates its usefulness in calculating and interpreting
complicated titration curves.

The protonation state of acidic and basic sites is of great
importance for biomolecular function, and much effort has
therefore been spent to understand the pH titration of
biomolecules (1-12). Several methods exist for determining
titration curves experimentally. Methods such as nuclear
magnetic resonance or infrared spectroscopy can be used to
determine the titration curves of individual sites. Other
methods such as potentiometry, the assessment of proton
uptake or release, or the measurement of the pH dependence
of free energy changes describe the titration of the molecule

as a whole. The two classes of methods provide different
information but are complementary to each other.

The protonation probability〈x〉 of an isolated site is given
by eq 1 below, algebraically equivalent to the Henderson-
Hasselbalch (HH)1 equation describing sigmoidal standard
titration curves (12):

The pKa value of an isolated titratable site is equal to the
pH at which the protonation probability of this site is1/2.
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〈x〉 ) 10pKa-pH

1 + 10pKa-pH
(1)
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However, titration curves of individual sites in biomolecules
often have nonsigmoidal shapes due to interactions between
sites within the molecule. By analogy to sigmoidal HH
curves, the pH values at which the protonation probabilities
of these sites are1/2, so-called pK1/2 values, are often used
to describe the titration behavior in such cases. However,
these pK1/2 values are not directly related to the free energy
of proton uptake, as we will show later. In cases when the
titration curves are not monotonic, pK1/2 values can even be
ill-defined (13, 14).

In this paper, we describe a general framework that
describes complicated titration behavior in a simple manner.
We call this framework the decoupled sites representation
(DSR). The DSR has some analogy to the normal-mode
analysis in classical mechanics. Complicated titration curves
of original interacting sites are represented as a weighted
sum of HH curves describing decoupled quasi-sites. The total
average protonation of the molecule exactly equals the sum
of HH curves of the quasi-sites, even when the titration
curves of original sites show a nonstandard shape. The DSR
connects the titration of original sites and the energetics of
protonation reactions. The DSR is not an approximation. If
the number of proton binding sites is known, it provides a
general description and model-free analysis of titration
behavior of biomolecules.

The paper has the following structure. First, we give the
derivation of the DSR using basic thermodynamic principles.
Second, we apply the DSR to three different systems. A
system of two interacting sites is used to explain the
principles of this new framework. Then we apply the DSR
to fit the experimental data of diethylenetriaminepentaacetate
(DTPA), which exhibits highly unusual titration curves. We
compare the DSR in this context to a different, widely used
model (4) that assumes pairwise interactions among sites.
Finally, we apply the DSR to the protein rubredoxin and
demonstrate its usefulness in interpreting titration curves of
biomolecules.

DeriVation of the Decoupled Sites Representation

Consider a macromolecule withN proton-binding sites in
equilibrium with protons in the surrounding solution. Each
site is capable of binding one proton, and its protonation
state is specified byxi, wherexi ) 1 or 0 depending on
whether sitei is occupied or empty. The total number of
possible protonation microstates of the molecule is 2N, and
a microstate can be conveniently represented by anN-
dimensional vectorxbk ) (x1

k, x2
k, ..., xN

k ). The superscript k
denotes the microstate. Each microstate is characterized
by its free energy2 Gk and the number of bound protonsn
()∑i

N xi
k). Note that only two microstates are uniquely

specified by the number of bound protons: the fully occupied
state (1,1,...,1) withn ) N and the completely empty state
(0,0,...,0) withn ) 0. In what follows, we take the latter to
be the reference state with a free energyG0 of 0. The
equilibrium properties of the system can be calculated from
its grand canonical partition function, which can be written
(3, 15) as a power series (binding polynomial) in the ligand
activity Λ ) 10-pH:

where â ) (kT)-1. The equilibrium protonation of sitei
averaged over all microstates is given by

In the special case of noninteracting sites, the free energy
of microstatexbk can be written as

This additive property allows one to group terms in eq 2
and rewrite the partition function of theN-site system in the
form of a product (15):

whereKi ()10-pKa,i) is the deprotonation constant of sitei.
The average protonation〈xi〉 of each site is then given by
the HH titration curve

and the total average protonation of the molecule is just the
sum of individual HH curves:

When sites interact, the additive property (eq 4) does not
hold, and〈xi〉 and 〈X〉 are no longer given by the simple
formulas eqs 6 and 7. However, by analogy with normal-
mode analysis in classical mechanics, one can expect to
decouple the interacting sites and recover the simplicity of
eqs 6 and 7 by an appropriate linear transformation. We are,
therefore, seeking the linear transformation{xbk} f {ybk} that
describes the occupancy of independent quasi-sites:

Later in this section, we determine the elements of the
transformation matrix{aij} explicitly, which proves that this
transformation is always possible. Out of theN × N entries
of this matrix, only (N - 1)2 are independent, since the{aij}
values have to satisfy3

2 Gk is the standard Gibbs free energy of microstate k when the proton
activity equals 1.

3 The total average number of protons occupying all of the original
sites must equal the total average number of protons on new quasi-
sites (∑i

N〈xi〉 ) ∑j
N〈yj〉). Substituting〈xi〉 from eq 8 into the left-hand

side of the above equality, we obtain∑i
N∑j

N aij〈yj〉 ) ∑j
N〈yj〉 which is

possible if and only if the first constraint in eq 9 holds. The other
constraint is determined by considering the average protonation in the
limit of extreme low pH: 〈xi〉 ) 〈yj〉 ) 1 for all i and j values.

Z ) ∑
k

2N

exp(-âGk)Λn (2)

〈xi〉 )
1

Z
∑

k

2N

xi
k exp(-âGk)Λn (3)

Gk ) -â-1 ln 10∑
i

N

xi
k pKa,i (4)

Z ) ∏
i

N

(1 + Λ10pKa,i) ) ∏
i

N (1 +
Λ

Ki
) (5)

〈xi〉 ) 10pKa,i-pH

1 + 10pKa,i-pH
) Λ

Ki + Λ
(6)

〈X〉 ) ∑
i

N

〈xi〉 ) ∑
i

N 10pKa,i-pH

1 + 10pKa,i-pH
(7)

〈xi〉 ) ∑
j

N

aij〈yj〉 (8)
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Since the new quasi-sites are, by definition, noninteracting,
their average protonations〈yj〉 are given by the HH curves
(eq 6) with a set of new deprotonation constantsK′j that
replaceKi. In the new basis, the partition function (eq 2)
takes the form of eq 5:

As has been noted before, the binding polynomial can always
be factorized (3, 16), so we can rewrite eq 2 in the form of
eq 10 whereK′j values are the negatives of the roots of the
partition function (eq 2). When the number of binding sites
N is greater than 2, there is no straightforward way to
determine analytically the number of real roots of the binding
polynomial (eq 2) (3). Our numerical analysis suggests that
repulsion between ligands on different sites is a sufficient
condition for all of the roots to be purely real. Conversely,
an effective attraction4 between the ligands may result in
some of the roots being complex, which implies positive
cooperativity between the sites, such that the binding of a
ligand increases the affinity for subsequent ligand binding.
The opposite effect, i.e., the decrease in the ligand binding
affinity with the number of ligands already bound, is called
anticooperativity. Although the mathematical formalism
developed here applies verbatim to positive cooperative
binding, we will consider this case in detail in a separate
paper. Because protons are charged, they usually bind
anticooperatively. Cooperativity is an unlikely scenario when
protons are the only type of ligand, the situation with which
we are concerned in this work. Note that since all the
coefficients of the binding polynomial (eq 2) are positive,
its real roots can only be negative. The correspondingK′j
values are therefore real positive numbers and may be
regarded as deprotonation constants of quasi-sites. Since
quasi-sites are noninteracting, the total average protonation
is the sum of HH titration curves described by a set of new
deprotonation constantsK′j. In this sense, it is meaningful to
describe theN-site molecule in terms ofN independent sites,
each capable of taking only one proton. The free energy∆G
required to fully protonate the molecule5 at a given pH can
be expressed as a sum of contributions from each quasi-site
(eq 11), where pK′a,j ) -log K′j

The entries of the transformation matrix{aij} can be
determined from eq 8. We use the general expression (eq 3)
for the average protonation of a quasi-site [〈yj〉 ) (1/Z)∑k

2N

yj
k exp(-âGk)Λn] and the noninteracting form (eq 4) for the

free energy of a microstate in terms of quasi-site occupancies
(Gk ) -â-1 ln 10∑j

N
yj

k pK′a,j). Grouping together the terms
corresponding ton ) 1, 2, ..., total protons bound, we obtain

Substituting〈yj〉 from eq 12 into the right-hand side of eq 8,
using expression eq 3 for〈xi〉 on the left-hand side, and
equating coefficients in front of the same powers ofΛ, we
arrive atN systems ofN linear equations foraij:

where we identifyG{i,p,q,...} as the free energy of a
microstate in which only original sitesi ,p, q, ..., are
protonated and others empty. There are a total ofN systems
(eq 13), one for everyi value from 1 toN. Each of them has
a unique6 solution which we find numerically (17). As we
have already mentioned, only (N - 1)2 out of N2 matrix
elements {aij} are independent, and we use 2N - 1
constraints (eq 9) to check the numerical accuracy of the
calculations. The resulting set of parameters{aij, K′j} com-
pletely defines the new quasi-sites and the transformation
matrix to the original sites. The description of macromolecule
titration in terms of quasi-sites is as general as the statistical
mechanical description provided by eq 3.

Applications of the Decoupled Sites Representation

In the previous section, we have shown that for a molecule
with N interacting titratable sites, the average protonation
of a site and the total average protonation of the molecule
are always given by

4 Effective attraction may result from conformational transitions
during titration, the presence of more then one type of ligand, or
nonelectrostatic site-site interactions.

5 Wyman showed that the free energy required to fully protonate
the macromolecule at unit ligand activity∆G ) kT ln Λm, whereΛm

is the mean ligand activity (24). This connects quasi-site pK’s with
Λm: -ln 10∑j

N pK′a,j ) ln Λm.
6 Equation 13 has a unique solution providing the determinant of

the matrix is not equal to zero. The determinant can become zero if
K′a,m ) K′a,k for a pair of m and k values. The system is then
degenerate, which means that someaij can be chosen arbitrarily subject
to the constraints (eq 9). In practice, the degeneracy is lifted by site-
site interactions.

∑
i

N

aij ) 1, ∑
j

N

aij ) 1 (9)

Z ) ∏
j

N (1 +
Λ

K′j) (10)

∆G ) -â-1 ln 10∑
j

N

(pK′a,j - pH) (11)

〈yj〉 )
1

Z
(Λ10pK′a,j + Λ2∑

k*j

N

10pK′a,j+pK′a,k +

Λ3∑
k<m
k*j

N

∑
m*j

N

10pK′a,j+pK′a,k+pK′a,m + ...) (12)

[e-âG{i}

∑
p*i

N

e-âG{i,p}

∑
q<p
q*i

N

∑
p*i

N

e-âG{i,p,q}

···

] )

[10pK′a,1 10pK′a,2 · · ·

∑
k*1

N

10pK′a,1+pK′a,k ∑
k*2

N

10pK′a,2+pK′a,k · · ·

∑
k<m
k*1

N

∑
m*1

N

10pK′a,1+pK′a,k+pK′a,m ∑
k<m
k*2

N

∑
m*2

N

10pK′a,2+pK′a,k+pK′a,m

· · ·

···
···

···

][ai1

ai2

ai3
··· ]
(13)
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where pK′a,j values are the pKa values of a set ofN
noninteracting quasi-sites connected to the original interacting
sites by a linear transformation defined by (N - 1)2

independent coefficients{aij}. A set of pK′a andaij can be
used as independent parameters to interpret titration data in
a model-free way.

Two Interacting Sites. The principles of the DSR can be
illustrated by a simple example. Suppose that the free energy
Gk of a protonation statexbk can be written in terms of
contributions that arise from protonation and those arising
from pairwise interactions between the titratable groups:

where pKa,i
intr is the intrinsic pKa value, i.e., the pKa value

this site would have if all other titratable sites were in the
reference state, andWij is the interaction between the
protonated forms of sitesi and j. The free energyGk in eq
16 can then be used in eq 3 to calculate the protonation
probability of each site (4-6). WhenN > 2, eq 16 isnot
the most general model.

The interaction between just two sites is enough to cause
complicated titration behavior (18, 19). Let us assume that
the pKa

intr values of the sites are 7.0 and 7.1. They interact
with an energyW12 of 3.0 kcal/mol, which is reasonable for
strongly interacting sites in proteins. Figure 1 shows the
titration behavior of this system. Application of the DSR in
this case involves two steps. We first use the set ofGks to
construct the binding polynomial (eq 2) and find its roots to
obtain the quasi-site pK′a,i values. We then solve theN ) 2
sets of linear equations eq 13 to obtain{aij}. The system
can be described by two quasi-sites having pK′a values of
4.6 and 7.4. The total protonation curve exactly coincides
with the sum of the two HH curves corresponding to the
noninteracting quasi-sites, and we identify these quasi-site
pK′as with the apparent pKa values. The latter can be
measured experimentally, and are, to a good approximation,
given by the inflection points of the total protonation curve.
The pK1/2 values of the original sites, 5.5 and 6.5, clearly do
not correspond to the apparent pK′as. The energetics of the
system, described by the total protonation curve, is not well
represented by these two pK1/2 values, and the pK′as of the
quasi-sites can be used to calculate the free energy of
protonation of the molecule at each pH (eq 11). The
individual titration curves of the two original sites can be
reconstructed from the titration curves of the quasi-sites via
eq 14 using matrix{aij} (Figure 1). For instance, when
pH ) pK′a,2 ) 7.4, the first quasi-site (pK′a,1 ) 4.6) is
practically unoccupied, the second one is half-protonated,
and therefore the probability of finding the proton on each
of the original sites is1/2 × 0.56 and1/2 × 0.44, respectively.

Titration of DTPA. We apply the DSR to analyze titration
of three nitrogen atoms in small molecule DTPA (Figure

2a) which is one of the simplest systems that exhibit strongly
nonmonotonic titration. The experimentally measured ap-
parent pKa values (20) of the total titration curve of the
system are 1.8, 2.5, 4.4, 8.8, and 10.4. At pH>13, DTPA is
completely deprotonated. The chemical shift of the hydrogens
bound to the carbons next to the nitrogens in DTPA has also
been measured in the pH range from 3 to 13 (14). In
agreement with experiments (21), we assume that only the
nitrogen sites titrate in this pH range, that they are totally
protonated at pH 3, and that the chemical shifts relate linearly
to the protonation probabilities shown in Figure 2. Because
the molecule is symmetric, the two terminal nitrogens cannot
be distinguished and their titration is given by a single curve.

Two different approaches can be used to fit the experi-
mental data.

(1) We fit the experimental data for the individual sites to
the DSR (eq 14). Because of the symmetry of the molecule
and the conditions in eq 9, there are three pK′a,i values and
two aij values available for simultaneous fitting. The remain-
ing aij values can be obtained from eq 9 and from symmetry
relations. The best fit gives the following values: pK′a,1 )
4.6, pK′a,2 ) 8.8, pK′a,3 ) 10.2,a11 ) 0.74, anda12 ) -0.62.
The pK′a,i values agree well with the measured pKa values.
As one can see from the solid lines in Figure 2b, the DSR
fits the experimental data excellently. Another choice would
be to fit the total titration curve to eq 15 to obtain the pK′a,i
values, and subsequently to fit the{aij} using those pK′a,i
values. This yields the following values: pK′a,1 ) 4.6,
pK′a,2 ) 9.0, pK′a,3 ) 10.2, a11 ) 0.74, anda12 ) -0.68.
This fitting procedure is much easier and faster and still
provides an excellent fit.

〈xi〉 ) ∑
j

N

aij

10pK′a,j-pH

1 + 10pK′a,j-pH
(14)

∑
i

N

〈xi〉 ) ∑
j

N 10pK′a,j-pH

1 + 10pK′a,j-pH
(15)

Gk ) -â-1 ln 10∑
i

N

xi
kpKa,i

intr +
1

2
∑

i

N

∑
j*i

N

xi
kxj

kWij (16)

FIGURE 1: Titration curves of two interacting sites. The two sites
have pKa

intr values of 7.0 and 7.1, and interact withW12 ) 3 kcal/
mol. The titration curves of the original sites are shown with red
lines. Note that the pK1/2 values of these curves (5.5 and 6.5) do
not correspond to the two inflection points of the total protonation
curve (black line). The decoupled sites representation gives two
independent quasi-sites with pK′a values of 4.6 and 7.4 (cyan
lines). These numbers coincide with the apparent pK′a values
approximately given by the inflection points of the total protonation
curve. The individual titration curves of the original interacting sites
(red lines) can be reconstructed from the standard titration curves
of the quasi-sites (cyan lines) via eq 14 using matrix{aij}. Both
the red and the cyan curves sum to the same total titration curve
(solid line).
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(2) As an alternative, we could apply the commonly used
model based on eqs 3 and 16, where we vary pKa,i

intr andWij

for the best fit. Because of the symmetry of the molecule,
there are only two pKa,i

intr values and twoWij values. We
obtain the following values for the best fit: pKa,1

intr )
pKa,2

intr ) 10.7, pKa,3
intr ) 11.2,W12 ) 2.2 kcal/mol, andW13 )

W23 ) 4.4 kcal/mol. The results are shown in Figure 2c.
Although the general features of the titration curves can be
represented by the model based on eqs 3 and 16, it fails to
reproduce the experimental data correctly over the entire pH
range.

Why does the DSR fit the experimental data better than
the widely used model based on eq 16? Two explanations

are possible. First, eq 16 relies on the assumption that the
free energy of a protonation state can be decomposed into
energy terms that account for the proton binding and for the
pairwise interaction between the proton binding sites. Such
a pairwise decomposition is not always possible, especially
since the titrating nitrogens in DTPA are separated by only
two carbons. Second, eq 16 assumes that the molecule adopts
a single conformation throughout the whole pH range. The
DSR does not use any particular assumptions for calculating
the free energy of the microstates. It is thus general and useful
for fitting experimental data in a “model-free” fashion.

Encouraged by the finding that the DSR fits the titration
curves of DTPA very well, we go one step further. We take
the seemingly less-structured titration curve of one of the
two terminal nitrogens, i.e., the cyan curve in Figure 2b, and
fit this curve to the DSR. We again obtain a fit yielding a
similar parameter set as in the case when we use both titration
curves: pK′a,1 ) 4.4, pK′a,2 ) 8.7, pK′a,3 ) 10.1,a11 ) 0.84,
anda12 ) -0.48. Using this fit, we are able to reconstruct
the titration curve of the central nitrogen, i.e., the red curve
in Figure 2b. The resulting curves are shown by the long-
dashed curves in Figure 2b. These results demonstrate that
it is possible to reconstruct the unknown titration curve of a
site from the known curves of the sites that interact with the
site of interest.

Titration of Rubredoxin. To illustrate the application of
the DSR to proteins, we applied it to rubredoxin, which has
54 amino acids of which 20 are titratable. Because this
protein is small and highly charged, all residues interact
strongly with each other. We use eq 16, which relies on the
decomposition of energy contributions into protonation
energies and interaction energies, to compute free energies
Gk of the microstates. This decomposition is possible in linear
theories such as the linearized Poisson-Boltzmann equation
(22). The pKa

intr values and the interaction energiesWij are
estimated by solving the linearized Poisson-Boltzmann
equation using the same parameters as in previous applica-
tions (23). We apply the DSR following the procedures used
in the two-site example, i.e., first find the roots of the binding
polynomial using the pKa

intr values and the interaction
energiesWij and then compute the coefficients{aij} by
solving N sets of linear equations.

Figure 3 shows the titration of four residues of rubredoxin
computed by the DSR. Whereas the shapes of the curves in
Figure 3a are sigmoidal and resemble HH curves closely,
the shapes of those in Figure 3b clearly deviate from HH
curves. Table 1 lists the expansion coefficientsaij used in
eq 14 for constructing the titration curves using quasi-site
pK′a values. The N-terminus of the protein has only two
quasi-sites contributing significantly to its titration. The
pK′a values of these two quasi-sites are similar, as are all the
pK′a values that have large contributions to the titration of
Glu50. Therefore, the titrations in Figure 3a do not deviate
much from HH curves. Since the contributing pK′a values
are not identical, the titration curves are somewhat flattened.
On the contrary, the titration curves of Glu53 and Glu54
are clearly not of HH shape. Both residues have many quasi-
sites with very different pKa values contributing to their
titration. For example, Glu53 has large contributions from
quasi-sites with pK′a values of∼5 and∼8. Accordingly, the
titration curve of this residue has two distinctive steps, one

FIGURE 2: (a) Structural formula of diethylenetriaminepentaacetate
(DTPA). (b) Fitting the titration curves of DTPA to the decoupled
sites representation (eq 14). The experimental data are represented
by discrete symbols, and the results of the DSR fit are given by
lines. The colors represent the following protonation probabilities:
red, middle nitrogen; cyan, terminal nitrogens; and black, total. Solid
lines represent a simultaneous DSR fit to the two individual titration
curves. For the long-dashed curves, only the data of the terminal
nitrogens are used (cyan diamonds). The decoupled sites representa-
tion describes the titration of DTPA very well. (c) Fitting the
titration curves of DTPA to eqs 3 and 16. The coloring is the same
as for panel b. Although the model describes the general shape of
the curves, it fails to reproduce the experimental data correctly over
the entire range of pH values.
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at pH∼5, the other at pH∼8. Glu54 has contributions from
quasi-sites with pK′a values of∼1 and∼4, and its titration
curve also has two steps.

When a titration curve deviates from the HH form, it is
often customary to describe it by the Hill equation (12),
where n is the Hill coefficient reflecting the degree of
cooperativity between the sites.

While the shape of the titration curves of Glu50 and the
N-terminus in Figure 3a is virtually identical to that of the
Hill equation (n ) 0.92 and 0.82, respectively), the titration
curves of Glu54 and Glu53 in Figure 3b are poorly
approximated by it. The corresponding Hill coefficients, 0.49
and 0.57, are considerably less than 1, indicating strong
anticooperative binding in this case. In situations such as

this, one can clearly benefit from using the DSR for
interpreting titration curves.

These examples show that the DSR can help to analyze
and rationalize the titration curves. Residues with titration
curves that have a sigmoidal shape but are flattened compared
to HH curves have contributions from several quasi-sites with
about the same pK′a values. The larger the deviation be-
tween the pK′a values of the contributing quasi-sites is, the
flatter the titration curve is. Residues with stepwise titration
curves are described by quasi-sites with very different pK′a
values.

Conclusions

We have introduced a novel framework, the decoupled
sites representation (DSR), for calculating, describing, and
interpreting complex titration curves of molecules. The
framework represents the titration of a molecule withN
interacting sites as the titration of a system ofN decoupled
quasi-sites. We show that the pK′a values of the quasi-sites
are directly related to the roots of the grand canonical
partition function. The quasi-sites are independent, and their
titration is therefore described by the Henderson-Hassel-
balch (HH) equation. The total protonation of the molecule
is always given by the sum of the HH curves corresponding
to the quasi-sites. Hence, no matter how complicated the
titration behavior of individual sites may be, methods that
can be used to assess overall proton uptake or release always
lead to a sum of HH curves (as long as protons do not bind
cooperatively, i.e., the binding polynomial has only real
roots). Therefore, by looking at the total titration curve, one
cannot conclude if the original sites interact.

Furthermore, we find from our formalism that the titration
curve of each original site can be represented by a weighted
sum of the HH curves describing the quasi-sites. The DSR
connects titration curves measured by NMR with titration
curves measured by potentiometry as demonstrated in the
case of DTPA. To discuss the energetics of chemical
processes based on proton uptake, one should use pK′a

FIGURE 3: Titration curves of selected residues in rubredoxin
representing two different types of titration behavior. The corre-
sponding pK′a values and expansion coefficients{aij} are given in
Table 1. The titration curves of the original sites are represented
by black dashed lines. Their approximations by Henderson-
Hasselbalch (eq 6) and Hill (eq 17) equations are represented by
cyan and red solid lines, respectively. The corresponding pK1/2
values and Hill coefficients are listed in Table 1. (a) Titration curves
that have a sigmoidal shape but are somewhat flattened out
compared to a standard Henderson-Hasselbalch curve and are
closely approximated by the Hill equation. (b) Two-step titration
curves. If quasi-sites with very different pK′a values contribute to
the titration of a real site, titration curves differ considerably from
both the Henderson-Hasselbalch and Hill forms and exhibit
multiple steps.

〈x〉 ) 10n(pK1/2-pH)

1 + 10n(pK1/2-pH)
(17)

Table 1: Expansion Coefficients and pK′a Values for the Decoupled
Sites Representation of Four Representative Residues in
Rubredoxina

N-terminus
pK1/2 ) 7.9,

n ) 0.92

Glu50
pK1/2 ) 4.7,

n ) 0.82

Glu53
pK1/2 ) 5.3,

n ) 0.49

Glu54
pK1/2 ) 3.6,

n ) 0.57

a1j pK′a,j a2j pK′a,j a3j pK′a,j a4j pK′a,j

0.774 7.7 0.176 5.1 0.263 5.1 0.514 3.9
0.219 8.4 0.173 4.5 0.196 8.4 0.297 1.1

0.161 4.4 0.112 7.7 0.043 4.4
0.126 4.2 0.080 3.9 0.043 4.2
0.113 5.4 0.073 5.4 0.036 4.5
0.098 4.7 0.071 4.2 0.027 4.7
0.097 4.9 0.067 4.4 0.022 5.1
0.046 3.9 0.049 4.9 0.017 4.9
0.004 3.2 0.048 4.5

0.028 4.7
0.007 6.1

a The pK1/2 value and the Hill coefficient that are often used to
describe titration curves are given at the top. We list only those
M e Naij coefficients and pK′a values that are required for reconstruct-
ing the titration curves within 1% error from the exact result. Thus,
the protonation of a residue is approximated here by〈xi〉 ≈
∑j

M aij[10pK′a,j-pH/(1 + 10pK′a,j-pH)]. To reconstruct the curves exactly, all
N coefficients are needed.
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values, not theK1/2 values of titration curves of original sites
as is often done in the literature. The DSR provides a
connection between the titration of the whole molecule, the
titration of its sites, and the energetics of the protonation
process.

Analysis of the framework allows us to draw a number of
general conclusions. If the titration curve of a certain site
has an unusual shape, it must interact with at least one other
site in the molecule. However, the converse is not true:. If
a measured titration curve of a site has the HH form, one
still cannotstraightforwardly conclude that only a single site
is responsible for this behavior as can be seen from our
calculation on rubredoxin. Nonmonotonic titration curves,
such as that of the central nitrogen in DTPA, indicate that
this site is interacting with at least two more titratable sites.
Even if titration curves of the original sites are nonmonotonic,
the titration curve of the whole molecule is always monotonic
since it is a sum of HH curves representing noninteracting
quasi-sites.

In the applications, we have shown that the DSR is able
to fit even very complicated titration curves. Moreover, we
show that it is possible to reconstruct the unknown titration
curve of a site from the known curves of the sites that interact
with the site of interest. This is particularly interesting if
the protonation behavior of one site is not easily accessible
experimentally. The application of the DSR to the rubredoxin
illustrates the use of the novel framework for discussing and
interpreting complicated titration curves of biomolecules.

The DSR is not an approximation. It is as general as the
most general thermodynamic description, but provides new
insights into the titration behavior of biomolecules. This
theory is generally applicable to binding and not restricted
to protons as ligands.
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