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Abstract: Proteins are flexible systems and commonly populate several functionally important states. To understand
protein function, these states and their energies have to be identified. We introduce an algorithm that allows the deter-
mination of a gap-free list of the low energy states. This algorithm is based on the dead-end elimination (DEE) theorem
and is termed X-DEE (extended DEE). X-DEE is applicable to discrete systems whose state energy can be formulated as
pairwise interaction between sites and their intrinsic energies. In this article, the computational performance of X-DEE is
analyzed and discussed. X-DEE is implemented to determine the lowest energy protonation states of proteins, a problem
to which DEE has not been applied so far. We use X-DEE to calculate a list of low energy protonation states for two
bacteriorhodopsin structures that represent the first proton transfer step of the bacteriorhodopsin photocycle.

© 2007 Wiley Periodicals, Inc. J Comput Chem 28: 2325–2335, 2007

Key words: protein design; homology modelling; global energy minimum; bacteriorhodopsin; protonation state; pH
titration; X-DEE; dead-end elimination

Introduction

Proteins are the most versatile and complex among the macro-
molecules of a living organism. They are involved in molecular
recognition, signal transduction, transport of substances, and in the
catalysis of most metabolic processes. The understanding of pro-
tein function on the atomic level is thus of fundamental biological
and medical interest. Ultimately, protein function depends on its
three-dimensional structure. This structure depends on the physi-
cal properties of its constituents and is influenced by environmental
factors such as temperature and pH. In accordance with the laws of
thermodynamics, the state of lowest free energy is the most prob-
able and thus of primary interest in structural research. Proteins,
however, are complex systems with many degrees of freedom and
the direct calculation of the lowest energy state is rarely possible.

In computational structure prediction, commonly the conforma-
tional space of proteins is discretized. In principle, this strategy
allows an exhaustive search of the combinatorial space for the state
of lowest energy. However, the size of the combinatorial space
in general overstrains todays computer resources. Algorithms that
deterministically find the state of lowest energy while circumvent-
ing an exhaustive search of the complete combinatorial space are
therefore of great interest. In 1992, Desmet et al.1 introduced such an
algorithm termed dead-end elimination (DEE) for discrete systems
that can be described in terms of pairwise interactions. Originally,
DEE was applied to predict protein side chain positions in homology
modelling. In this context, the protein can be seen as a set of residues,

each of which may adopt a finite number of possible rotamers. More
generally, one can describe such a system as a set of sites each hav-
ing a finite number of possible forms. The DEE algorithm identifies
high energy forms of sites that are incompatible with the state of low-
est energy. These high energy forms are termed dead-ends and can
be eliminated from further consideration. Thereby DEE reduces the
combinatorial space to a point where a subsequent exhaustive search
becomes feasible. DEE has been successfully applied in protein
structure prediction,1–7 protein design,8–10 sequence alignment,11

and also in the evaluation of protein solvent exposure.12

Proteins, however, are flexible systems that may adopt several
functionally important states. To understand their mechanisms it is
necessary to obtain a complete picture of the states that are accessi-
ble to the protein. Consequently, algorithms that are able to produce
gap-free lists of low energy states, i.e., lists of states that are com-
plete up to a given energy distance from the global energy minimum,
are of general interest in structural biology. While Monte Carlo tech-
niques allow to sample low energy states and generally provide an
accurate description of thermal properties,13 they do not allow to
obtain gap-free lists of low-energy states for a given energy range.
This is a major drawback if one investigates the kinetics of a working
enzyme. States, not even populated to a measurable degree, may well
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be functionally relevant.14, 15 Thus, an incomplete sample of states
available to the system may lead to wrong conclusions about the
mechanism. The DEE algorithm can be modified to exclude only
those forms that are incompatible with states in a given energy dis-
tance from the global minimum.3 The reduced combinatorial space
is then searched by an A∗ algorithm for states lying within the given
energy range. This reduced combinatorial space, however, may still
be very large and the search algorithm, though efficient, threatens
to get stuck in near exhaustive searches. Here, we present an alter-
native algorithm, that uses the full power of DEE to reduce the
combinatorial space. Subsequent DEE scans using so-called search
keys can be used to unambiguously identify states according to their
energetic order. Furthermore, this new algorithm allows to complete
any given list of low energy states by identifying those low energy
states that are missing in the list. The algorithm is termed X-DEE
(extended DEE).

We implemented X-DEE to determine protonation states of a
protein. Protonation state changes are crucial for many enzymatic
reactions and other biochemical processes such as signal transduc-
tion, photosynthesis and proton transfer across membranes.16–21

Even without explicit protonation state changes, the charge distri-
bution of a protein is essential for its function. Thus, determining
the energetically accessible protonation states of a protein is a cru-
cial step towards understanding its function. The protonation state
energy is routinely calculated from intrinsic energies of the sites
and pairwise interaction between the protonatable residues.13, 22, 23

The energy contribution of each protonatable residue depends on its
protonation form. In proteins, not only the state of lowest energy but
also the next higher protonation states are commonly significantly
populated and often play a functional role. By generating a gap-free
list of the low energy states, X-DEE provides a complete picture of
functionally relevant protonation states.

We applied X-DEE to the light-driven proton pump bacterio-
rhodopsin (BR), an example of a protein where protonation state
changes play a functionally important role. BR has been investi-
gated extensively and its structure as well as its proton pumping
mechanism is known in detail.24–28 Figure 1 shows the structure of
BR, the key residues involved in the proton transfer and the transfer
events occurring after light absorption. The bR protonation state,
the ground state, is characterized by a protonated retinal Schiff base
and a deprotonated Asp85. Asp96, Asp115, and Arg82 were exper-
imentally shown to be protonated, while Asp212 was shown to be
unprotonated.29, 30 Two glutamate residues, Glu194 and Glu204,
are part of the proton release complex which is protonated in the bR
state.31 After the first proton transfer step, BR is in the M1 proto-
nation state characterized by a deprotonated retinal Schiff base and
a protonated Asp85. No other key residue changes its protonation
form. The next photocycle intermediate state is the M2 protonation
state, where a proton has been released to the extracellular side. The
M2 protonation state is characterized by an unprotonated retinal
Schiff base, a protonated Asp85 and an unprotonated proton release
complex. Subsequently, the retinal Schiff base is reprotonated from
Asp96 close to the cytoplasmic site, which thereafter takes up a pro-
ton from the cytoplasm. Last, Asp85 deprotonates and the proton
release complex is reprotonated.

In the present article, we describe the X-DEE algorithm that
generates gap-free lists of low energy states. We implemented X-
DEE to determine protonation states of proteins, a problem to which

Figure 1. The structure of bacteriorhodopsin. BR is a seven-helix trans-
membrane protein that covalently binds its chromophore retinal to a
lysinyl residue. Light absorption triggers BR’s pumping cycle, during
which a proton is transferred from the cytoplasm to the extracellular
space. The key residues of proton transfer are shown explicitly and the
five sequential transfer steps are indicated by the numbered arrows.

DEE has not been applied so far. We analyze the properties of the
X-DEE algorithm and its computational performance. X-DEE is
then used to calculate all low energy protonation states for two
BR structures representing the bR and M1 photocycle intermedi-
ates. The energy distribution of the calculated low energy states
is analyzed and implications for the proton transfer in BR are
discussed.

Theory

System

The DEE algorithm solves the combinatorial problem of identifying
the global energy minimum for discrete systems whose state energy
can be expressed in terms of intrinsic energies of individual sites
and pairwise interactions between these sites. The sites can adopt
discrete forms that differ in their contribution to the state energy.
Each state of the system can be described by a vector �x that specifies
the form x of each site µ in this state: �x = (x1, . . . , xµ, . . . , xN ),
where N is the number of sites. A general formulation of the state
energy is given by:

E =
N∑

µ

Eintr(xµ) + 1

2

N∑

µ

N∑

ν

I(xµ, xν) (1)
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where Eintr(xµ) is the intrinsic energy of site µ in form x and I(xµ, xν)

is the interaction energy between sites µ and ν in their respective
forms. Assuming an equal number of forms P for each site, the
number of possible states M equals PN , rendering an exhaustive
search impossible even for rather small systems.

Dead-End Elimination

DEE circumvents an exhaustive search of the full combinatorial
space by identifying forms of sites that cannot contribute to the
state of lowest energy, so-called dead-ends, without explicitly cal-
culating state energies.1 These dead-ends can be excluded from
further consideration, thereby significantly reducing the size of the
combinatorial space.

The original DEE criterion of Desmet et al.1 compares the energy
of two forms of a site µ, dµ and cµ. Form d of site µ is defined as
dead-end, if the state of lowest energy with dµ is higher in energy
than the state of highest energy that contains cµ. In other words,
dµ is a dead-end, if all states with dµ are higher in energy than all
states that contain cµ. Later, Goldstein published a more powerful
criterion.2 The Goldstein criterion identifies dµ as dead-end, if the
state energy can always be lowered by changing the form of site µ

from d to c. That means, dµ is a dead-end, if all states that contain dµ

are higher in energy than the corresponding states that contain cµ.
A graphic representation of the two schemes is shown in Figure 2.

According to the Goldstein DEE criterion, dµ can be identified
as dead-end if:

Eintr(dµ) − Eintr(cµ) +
∑

ν �=µ

min
x

[I(dµ, xν) − I(cµ, xν)] > 0 (2)

where xν denote the form x of all sites ν �= µ. The first two terms
represent the difference in intrinsic energies Eintr between dµ and
cµ. The third term accounts for the difference in interaction energy

Figure 2. The DEE criterion. Desmet et al.1 defined a DEE criterion
that identifies dµ as dead-end, if the state of lowest energy that contains
dµ (D) has a higher energy than the state of highest energy that contains
cµ (P). The Goldstein DEE criterion identifies those dµ as dead-ends, for
which the state energy can always be lowered by changing the form of
site µ from d to c.2 Thus, the Goldstein criterion additionally identifies
d′

µ as dead-end, although the original Desmet criterion is not fulfilled
(D′ is lower in energy than P). Instead of calculating the curves, the
DEE criterion of Goldstein considers the minimum energy difference
between the states that contain dµ and cµ, indicated by the arrow.

between the two forms, d and c of site µ and the forms x of all other
sites ν. For each site ν, the minimum interaction energy is deter-
mined by searching over all possible forms x. Thus, eq. (2) yields a
lower bound of the change in energy upon changing the form of site
µ from d to c. If this lower bound is larger than zero, the state energy
can always be lowered by changing dµ to cµ. Accordingly, dµ is a
dead-end and can be eliminated. The DEE criterion is successively
applied to all forms of all sites. The computational cost to evaluate
the DEE criterion is of the order N2P3, where N denotes the number
of sites and P the number of forms per site.4 This scaling behavior
poses a huge advantage compared to the O(PN ) scaling behavior
of an exhaustive search of the combinatorial space. Commonly, the
state of lowest energy is not directly determined by DEE, rather
the size of the combinatorial space is reduced to a point, where a
subsequent exhaustive search becomes feasible.

The described DEE algorithm has been successful in the determi-
nation of the lowest energy state for various biophysical systems.1–12

However, for many systems a set of low energy states is function-
ally relevant. Based on DEE we developed a computational scheme
termed X-DEE (extended DEE) that generates a gap-free list of low
energy states.

X-DEE

The basic idea of the X-DEE algorithm is to exclude a list of states
from the search space explored by DEE. If a gap-free list of k low
energy states {�x1, · · · , �xk} is already known, the (k + 1)th state can
be found by restricting the search for the lowest energy state to the
set of all states M excluding the set of already known states, i.e.,
by searching the state of lowest energy in M \ {�x1, · · · , �xk}. More
generally, X-DEE can be used to restrict the search to a set M \ L
for any given list L of states. In case L is not gap-free, X-DEE
will identify the state of lowest energy not included in L and can
consequently complete L, until a gap-free list of low energy states
is obtained.

The DEE algorithm gains its computational efficiency from
excluding whole sets of states from further consideration without
explicitly calculating their energies. In particular, the identification
of dµ as dead-end allows to exclude all states that contain dµ from
further consideration, while none of the state energies have to be
calculated explicitly. As a consequence, there is no straightforward
way to exclude an arbitrary list of states L from the search space
explored by DEE. However, a DEE search can be restricted to a
specific type of subset of M: keeping a number of sites fixed dur-
ing a DEE search yields the state of lowest energy of a subset S
of M characterized by the forms of those sites that were fixed. For
example, applying DEE to the subset S of those states that have
form h at site 1 will determine the state of lowest energy with form
h at site 1. This subset S can be represented by a so-called search
key �bS = (h1, ∗2, · · · , ∗µ, · · · , ∗N), where h is the specified form of
site 1 and ∗ indicates that this site is undefined, i.e., will be deter-
mined during the DEE search. The idea is thus, to define search keys
�bS = (b1, · · · , bµ, · · · , bN) such that the subsets S represented by
the individual search keys together represent M \ L. For each site
µ of the system, these search keys have a component bµ which is
either fixed to a specific form or undefined. Determining the state
of lowest energy of all subsets via the DEE algorithm then yields
the desired state of lowest energy of M \ L. The main challenge of
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X-DEE lies in creating a search basis B, i.e., a set of search keys �bS ,
such that L is excluded from the search and the complete set M \ L
is searched. In the following section, a procedure to generate B is
presented that fulfills both conditions.

Constructing a Search Basis B for M \ L

A schematic representation of the procedure CreateSearchBasis is
shown in Figure 3. Given the list of states L to be excluded from
the search, a search basis B is constructed as follows: Input of the
recursive procedure CreateSearchBasis is a list of states L′ and a
list vector �t′ that is associated to L′. At first, L′ is equal to the
complete list L. The list vector�t′ contains an element for each site µ:
�t′ = (t1, . . . , tµ, . . . , tN). This list vector keeps track of the sites that
are already fixed to specific forms. At first, no site in �t′ is fixed, i.e.,
all sites are undefined, �t′ = (∗1, · · · , ∗µ, · · · , ∗N). The algorithm
proceeds in five steps:

1. It is checked whether the associated list vector�t′ contains at least
one undefined site. Otherwise, the procedure returns.

Figure 3. Flowchart of the recursive procedure CreateSearchBasis.
Input of CreateSearchBasis is a list of states L and an associated list
vector �t. With each recursion, L is divided into sublists Lsub and one
additional site is fixed in the associated list vectors �tsub. CreateSearch-
Basis terminates when all sites of a list vector �tsub are fixed. With each
recursion, search keys �bS can be generated that differ from the list vec-
tor �tsub in the form of site µ. The search keys are added to the search
basis B. In total, CreateSearchBasis generates a set of search keys �bS
characterizing subsets S whose union represent M \ L.

2. Among the undefined sites, the algorithm searches for a site µ

with forms that do not occur in any of the state vectors in L′,
i.e., a site µ with unused forms h. Once such a site µ is found,
the algorithm proceeds to step 3. If no such site exists, the first
undefined site in�t ′ is chosen and the algorithm proceeds directly
to step 4.

3. For each unused form h of site µ, a search key �b is defined by
copying the list vector �t′ to �b and fixing site µ to form h in �b;
bµ = h. Each search key �b thus differs from the current list
vector only at site µ. Fixing site µ to forms h not occurring in
L′, guarantees that the subset represented by �b and L are disjoint,
i.e., �b represents a subset of M \ L. The search keys �b are added
to the search basis B.

4. The vectors in L′ are divided into sublists L′
sub such that site µ

has form g in all state vectors �x in L′
sub, i.e., xµ = g for all states

in L′
sub. To each sublist L′

sub, a separate list vector�t′sub is assigned
by copying list vector �t′ to �t′sub and fixing site µ to the form g
common to all state vectors in L′

sub; tµ = g.
5. For each sublist L′

sub and its list vector �t′sub, the steps 1–5 are
executed again.

The recursive procedure CreateSearchBasis thus starts with a list
L′ and an associated list vector �t′ and ends up with a set of sublists
L′

sub with associated list vectors �t′sub. CreateSearchBasis terminates
for a given sublist, if all sites are fixed in the associated list vector.
If step 3 is executed, new search keys are added to the search basis
B. An example of creating a search basis is given in Figure 4.

All search keys in B are subjected to a DEE search yielding the
states of lowest energies of the represented subsets S. These states
include the state of lowest energy of M \ L.

Completeness of the Search Basis B

For the search basis B, it remains to be shown that (i) all subsets of
states S represented by the search keys are subsets of M \ L and
that (ii) the union of all subsets S represent the complete set M \ L.

i. Each search key is derived from a list vector�t′ which is associated
with a list L′. By construction, a search key derived from �t′ at
most searches the subset L′ of L. However, each search key
differs at a given site µ from all state vectors in L′ and thus,
the set S represented by this search key and L′ are disjoint. It
follows that each search key represents a subset S of M \ L.

ii. To prove that the complete set M \ L is represented by the search
basis B, it is sufficient to show that for any state �x in M \ L, there
is a subset S of M \ L represented by a search key �bS such that
�x ∈ S. After the first recursion of CreateSearchBasis, there are
two possibilities: either a search key is generated with only one
fixed site, which adopts the same form as in �x, or a sublist Lsub

and an associated list vector �tsub exist such that �tsub has its fixed
site in common with �x. In the first case, the search key represents
the subset S which includes �x. Hence, �x is represented by B.
In the second case, the algorithm proceeds further. (This second
case can occur for two reasons: either a site µ was found with
unused forms but �x has a used form at site µ, or no site with an
unused form was found and an undefined site was chosen.) After
the next recursion, either an adequate search key is constructed
or a sublist exists with an associated list vector having its two
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Figure 4. Example for the generation of a search basis B. The list L
contains three states: { �x1, �x2, �x3}. The system has four sites that can adopt
the forms 1 and 0. An unused form h is a form that does not appear in L
for a given site µ. In the list vectors �t and the search keys �b, sites can be
either fixed to a form, 1 or 0, or undefined, ∗. The output is the search
basis B.

fixed sites in common with �x. Proceeding further, either a search
key �bS is generated such that �x ∈ S, or finally a sublist Lsub of
L exists with an associated list vector �tsub which has only one
undefined site and is identical to �x at all other (N −1) sites. Since
�x is assumed to be in M \ L, it follows that �x has to differ from
all vectors in Lsub at the site not fixed in �tsub. Consequently, the
form that �x adopts at this undefined site is unused and a search
key �bS is created that represents a subset S of M \ L which
contains �x. In this case, all sites are fixed in �bS and the subset S
contains only the state vector �x.

Thus by construction, all states in L are excluded from B and
the union of the subsets S, characterized by the search keys in B,
represent the complete set M \ L.

Application of X-DEE to the Determination of Protonation States

Proteins contain protonatable residues whose charged state depends
on their interaction with the protein environment. These protonat-
able residues are treated as sites and each site can adopt two forms,

protonated and unprotonated. The protonation state energy Gn of a
protein with N protonatable sites depends on the protonation form
of each protonatable site xµ and its intrinsic pKa, pKintr , on the
interaction between each pair of protonatable sites Wµν and on the
pH-value:13

Gn =
N∑

µ=1

((
xn
µ − x◦

µ

)
RT ln 10(pH − pKintr,µ)

)

+ 1

2

N∑

µ

N∑

ν

(
Wµν

(
xn
µ − x◦

µ

)(
xn
ν − x◦

ν

))
(3)

The first term of eq. (3) represents the intrinsic protonation energy
and the second term the interaction energy between sites. The value
of xn

µ is 1 if site µ is protonated and 0 if site µ is unprotonated in
protonation state n. The reference protonation form of the site µ is
given by x◦

µ. R is the gas constant and T the absolute temperature.
The intrinsic pKa, pKintr , and the interaction energy matrix Wµν can
be calculated from the linearized Poisson-Boltzmann equation as
described in detail elsewhere.13, 22, 32

In analogy to eq. (2), dµ is identified as dead-end if:

(dµ − cµ)RT ln 10 (pH − pKintr,µ)

+
∑

ν �=µ

min
x

[Wµν(dµ − cµ)
(
xν − x◦

ν

)] > 0 (4)

Those dµ fulfilling eq. (4) are excluded from further consideration.
Since the sites adopt only two possible forms, identifying one form
as a dead-end already fixes this site to the remaining form f = 1−d.
Equation (4) can be made computationally more efficient, if the
sum in the second term is only taken over unfixed site. Since the
protonation forms of the fixed sites influence the pKintr of the unfixed
sites, these must be corrected during the DEE search:

pKcor
intr,µ = pKintr,µ − 1

RT ln 10

Nfixed∑

i

Wµi
(
fi − x◦

i

)
(5)

where the value of fi is either 1 or 0 depending on whether site i is
fixed in the protonated or unprotonated form. The corrected pKintr,µ

of the unfixed sites obtained from eq. (5) includes the interaction
with the fixed sites as a constant energy contribution.

Computational Details

Structure Preparation

Calculations were performed on high resolution X-ray structures
of bacteriorhodopsin. Two structures were chosen that represent
the bR intermediate (PDB-entry: 1c3w33) and the M1 intermediate
(PDB-entry: 1kg834).

The crystal structures are resolved from residue Thr5 to Gly231.
The termini were blocked with methyl groups. The coordinates of
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the missing EF-loop, which is highly flexible, were taken from a
reference structure (PDB-entry: 1qhj35). The structures were pre-
pared following the protocol given in ref. 36. For all structures,
hydrogen atoms were generated using the HBUILD routine of the
CHARMM force field. Their positions were optimized with the
steepest descent algorithm followed by the conjugate gradient and
Newton-Raphson algorithm until a tolerance gradient of 10−7 was
fulfilled. All non-hydrogen atom coordinates were kept fixed during
the minimization. The hydrophobic core of the membrane around
the proteins is modelled by a ring of uncharged dummy atoms with
a radius of 1.5 Å.36

Continuum Electrostatic Calculations

The intrinsic pKa, pKintr , and the interaction energy matrix Wµν

were calculated from the linearized Poisson-Boltzmann equation
using the program multiflex of MEAD.32 Partial atomic charges
were taken from the CHARMM22 parameter set.37 The charges
for the retinal Schiff base were derived from a density functional
calculation as described previously.36 Atomic radii were set to 1.7 Å
for carbon atoms, 1.0 Å for hydrogen atoms, 1.5 Å for oxygen atoms,
1.55 Å for nitrogen atoms, and 1.8 Å for sulfur atoms. The linearized
Poisson-Boltzmann equation was numerically solved using the finite
difference method. For the finite difference lattices, two focusing
levels were used, first a coarse grid with a spacing of 1.0 Å, followed
by a fine grid with a spacing of 0.25 Å. The dielectric boundary
between the protein and the solvent was derived using a probe sphere
with a radius of 1.4 Å and the atomic radii as given above. All
calculations were performed using dielectric constants of 80.0 for
the solvent and 4.0 for the protein and the membrane environment,
the temperature was set to 300 K and the ionic strength to 0.1 M.

Models

The protonatable residues arginine, aspartate, glutamate, lysine, and
tyrosine and the retinal Schiff base are defined as sites. These pro-
tonatable groups can bind one proton and thus can adopt P = 2
forms, protonated (x = 1) and unprotonated (x = 0). The two BR
structures, bR and M1, each contain N = 39 sites leading to a total
of M = PN ≈ 5 × 1011 states. The bR and M1 structure will be
referred to as bR system and M1 system, respectively.

Additionally, systems small enough to allow an exhaustive
search of the combinatorial space were derived from the bR and
M1 structure. As sites were chosen: Asp36, Asp38, Lys40, Lys41,
Glu74, Arg82, Asp85, Asp96, Asp102, Asp104, Asp115, Lys129,
Arg164, Glu164, Glu166, Arg175, Glu194, Glu204, Asp212,
Arg225, and the retinal Schiff base. In total, N = 21 sites were
chosen leading to M = PN ≈ 2, 000, 000 states. All other sites
were fixed to their standard protonation form at pH = 7.0. The
fixed sites are treated as a constant energy contribution using eq. (5).
These systems will be referred to as small bR system and small M1
system.

Results and Discussion

The X-DEE algorithm which we present in this article allows to
determine gap-free lists of low energy states for molecular systems
that can be treated by the DEE algorithm. A gap-free list is obtained

by subsequently excluding the determined low energy states from
the search space. In this section, we first analyze the computa-
tional performance of the X-DEE algorithm. As a first application,
we then used X-DEE to determine protonation states of the pro-
ton pump bacteriorhodopsin (BR). We analyze the calculated low
energy states with regard to the convergence of thermodynamic
properties in dependence on the number of states determined by
X-DEE. The energy distribution of the states of two BR structures,
bR and M1, are discussed in detail with respect to the proton transfer
of BR.

Statistics of the Search Basis B

X-DEE divides the set M \ L into suitable subsets S each char-
acterized by a so-called search key �bS (Figs. 3 and 4). M is the
complete set of states of the system and L is a list of states to be
excluded from the search for low energy states. Together, the search
keys �bS form the search basis B. Each subset S represented by
the respective search key �bS is subjected to a separate DEE search.
Since the DEE search is the most time consuming operation, the
computational performance of X-DEE depends on the number of
search keys and their properties. The search basis B is analyzed in
terms of the absolute number of keys, the number of undefined sites
per key and the number of new keys per state added to L.

Total Number of Search Keys

In Figures 5a and 5b, the total number of search keys is plotted in
dependence on the number of states in L and on the number of sites
N , respectively. These graphs show the dependence of the number
of search keys on (i) the number of states in L, (ii) the number of
forms P, and (iii) the number of sites N .

i The graph in Figure 5a shows that the total number of search
keys depends approximately linearly on the number of states in
L. The number of states in L influences the number of search
keys in two different ways: on the one hand, each additional
state in L increases the number of states to be excluded from
the search and thereby tends to increase the number of generated
keys. On the other hand, each additional state in L decreases the
search space M \ L and thereby tends to decrease the number
of generated keys. Ultimately, the number of search keys will
decrease with the number of states in L. However, as long as L
is small compared to M \ L, an approximately linear increase
of the total number of search keys can be observed (Fig. 5a).

ii The graph in Figure 5a shows the total number of search keys
in dependence on the number of states in L for systems with
N = 21 sites and a number of forms P ranging from 2 to 10.
For each additional form, one additional key can be generated
per site. Thus, increasing the number of forms by 1 increases the
slope of the curve by approximately N .

iii The graph in Figure 5b depicts the total number of search keys
in dependence on the number of sites N for a number of forms
P ranging from 2 to 10. The search keys were generated for lists
of 1000 random states. The number of recursion levels of Cre-
ateSearchBasis is equal to the number of sites. Thus, the number
of generated keys increases approximately linearly with N .
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Figure 5. Statistics of the search basis. (a) Total number of search keys in dependence on the number of
states in L plotted for N = 21 sites and numbers of forms P ranging from 2 to 10. (b) Total number of
search keys plotted in dependence on the number of sites N for numbers of forms P ranging from 2 to 10.
The search bases were generated for lists of 1000 random states. (c) Distribution of search keys with regard
to the number of fixed sites. The search basis was generated for two systems with N = 21 sites and P = 2
forms and for lists of 1000 states. One list contained random state vectors, and the other contained 1000
low energy states of the small M1 system. The insert shows a magnification of the range of fixed sites from
0 to 8 (x-axis). (d) The average number of new keys in dependence on the number of states in L for systems
with P = 2 forms and N = 21 and 39 sites, i.e., the small and full M1 system, respectively. The average
was taken over 50 consecutive states.

From Figures 5a and 5b it can be seen that the number of search
keys increases linearly with the size of the system. While the total
number of keys can be relatively high, we will show in the next
paragraphs that the computational cost of X-DEE does not rise as
quickly as the number of keys.

Properties of the Search Keys

The computational cost of a DEE search depends on the size of the
subset S that has to be searched. The size of S is directly correlated
to the number of undefined sites in the search key �bS . In other words,
the more sites are fixed in �bS , the faster is the DEE search due to
the scaling behavior of the Goldstein algorithm.4 In Figure 5c, the
number of search keys is plotted in dependence on the number of
fixed sites per key for a system with N = 21 sites and P = 2
forms. The search keys were generated for two lists: a list of 1000
random states and the gap-free list of 1000 low energy states of
the small M1 system. As can be observed, the majority of search
keys have a large number of fixed sites. Each recursion level of
CreateSearchBasis potentially increases the number of sublists Lsub

for which search keys can be generated. The higher the recursion
level, the more sites will be fixed in the generated keys. Thus, with

each recursion level more keys can be generated and more sites will
be fixed in the search keys rendering DEE searches for these keys
inexpensive.

Furthermore in Figure 5c, it can be seen, that significantly more
search keys are generated for a list of random states than for a
list of low energy states. This behavior is due to the fact that, in
contrast to random states, consecutive low energy states resemble
each other. Lists of similar states lead to fewer sublists Lsub during
early recursion levels, since less used forms will exist for a given
site in a given sublist Lsub. During the early recursion levels, this
smaller number of sublists leads to the generation of more keys for
lists of low energy states (see inset in Fig. 5c). Since the final number
of sublists Lsub is equal to the number of states in L, during later
recursion levels, there will be a larger number of subdivisions for a
list of low energy states. This implies that for the list of low energy
states, significantly less search keys are generated than for lists of
random states making X-DEE significantly more efficient for the
former.

Number of New Keys for Each New State in L

X-DEE can be used to build up a list of low energy states one after
the other. Then, each L ∪ {�xnew} differs from L only by the new
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state �xnew and the search keys representing M \ L ∪ {�xnew} will
be mostly identical to those keys representing M \ L. To obtain the
next state, only subsets represented by new keys have to be subjected
to a DEE search. Therefore, the computational cost to determine the
next state will be proportional to the number of new keys necessary
to characterize M \ L ∪ {�xnew}.

In Figure 5d, the number of new keys is plotted in dependence
on the number of states in L for systems with P = 2 forms and
N = 21 and 39 sites (small and full M1 systems). The number of
new keys is averaged over 50 consecutive states. The number of
new keys for every new state in L remains approximately constant.
Peaks in the number of new keys can be observed that amount to a
maximum of 112 and 253 new keys for the small and the full M1
system, respectively. These peaks occur, if the new state that was
added to L originated from a search key that represents a large subset
S of M \ L, i.e., if the state was found by a search key with a large
number of unfixed sites. This large subset S, previously represented
by only one search key, now has to be split up into many smaller
subsets, each represented by a new search key. The frequency and
also the amplitude of the peaks decrease with the number of states
in L, since search keys with mostly undefined sites become less
probable. On average, for the small and the full M1 systems, 5 and
10 new keys are generated per state added to L, respectively. The
computational cost to determine an additional state is on average
constant.

Convergence of the Partition Function

Thermodynamic properties are efficiently calculated using Monte
Carlo methods. These methods achieve a convergence of thermo-
dynamic properties by sampling a large fraction of the phase space
biased towards the low energy regime.38 While Monte Carlo meth-
ods can provide a set of low energy states, there is no guarantee
that this set is gap-free, i.e., that no states with lower energy exist.
X-DEE, in contrast, was developed to provide a complete descrip-
tion of the lowest energy regime, i.e., a gap-free list of low energy
states. However, since the thermodynamic properties of a system
depend mainly on the states of lowest energy, a gap-free list of low
energy states may additionally be used to derive thermodynamic
properties.

Thermodynamic properties depend on the partition function Z
which is the sum of the Boltzmann factors over all possible states
of the system:

Z =
M∑

i

exp(−βGi) (6)

where M is the total number of states, Gi is the state energy and β =
1/kBT ; kB is the Boltzmann constant and T the absolute temperature.
The exact value of Z can only be obtained, if all state energies of
the system are known. Then, the exact population P of each state n
can be calculated as:

Pn = exp(−βGn)

Z
(7)

The calculation of all state energies is, however, not feasible for
complex systems. We approximate the partition function as:

Zapprox =
MXD∑

i

exp(−βGi) (8)

where the sum goes over all MXD states that were determined by
X-DEE. We calculate the approximate population P of each state n
as:

Pn = exp(−βGn)

Zapprox
(9)

Since all low energy states are known, the convergence of the par-
tition function can be analyzed with respect to the number of low
energy states that have to be considered.

Lists of low energy states are calculated for the full bR and M1
systems and for the small bR and M1 systems. For the small sys-
tems the total number of states is approximately 2 million rendering
the calculation of all state energies and thus of the exact partition
function possible.

Figures 6a and 6b show the convergence of the partition function
for all systems in dependence on the number of considered states. In
Figure 6a, the exact partition function is indicated by dotted lines for
the small systems. As can be seen in Figures 6a and 6b, the approxi-
mated partition function Zapprox converges quickly with the number
of considered states. Likewise, the population of the lowest energy
state Plowest converges quickly to the exact population for the small
systems as shown in Figure 6c. Figure 6d shows the convergence
behavior of the population of the lowest energy state Plowest for the
full systems. For these systems, a convergence of the approximated
partition function and the population of the lowest energy state to a
constant value can be observed when approximately 50 low energy
states are considered. Zapprox does not change anymore between the
1500th and the 3000th state. Both the full and the small M1 systems
show a slower convergence than the respective bR systems, indi-
cating a larger density of states in the low energy range for the M1
system as will be discussed in more detail in the next section.

Analysis of the Low Energy States

In Figure 7, the energy distribution of the low energy states is
shown for the bR and M1 system. All states in an energy range
of 15 kBT300 K are depicted. As can be seen, the density of states
is significantly higher for the M1 system than for the bR system.
For the bR system approximately 200 states lie in the 15 kBT300 K

range, while the M1 system has approximately 700 states in the same
energy range. An indication of this behavior was already given by
the slower convergence of the partition function for the M1 system
(Fig. 6b). Whether a system is well represented by the lowest energy
state or by several low energy states can only be decided, after a list
of low energy states was calculated. Interestingly, for the bR system,
the first two states are closer in energy than for the M1 system (see
inset in Fig. 7).

As shown in Figure 6, the population of each state can be calcu-
lated to a good approximation from relatively few low energy states.
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Figure 6. Convergence of Zapprox and the population of the lowest energy state Plowest . Zapprox [eq. (8)] is
plotted in dependence on the number of states MXD considered to approximate the partition function: (a)
small systems, and (b) full systems. The dotted lines indicate Z calculated from all states for the small
systems. The population of the lowest energy state Plowest is plotted in dependence on the number of states
considered to approximate the partition function: (c) small systems, and (d) full systems. For the small
systems, the dotted lines indicate the exact population of the lowest energy state calculated from all states.
All calculations were performed at pH = 7.0.

Thus, for the full bR and M1 system, the population for each low
energy state Pn [eq. (9)] was calculated from the converged partition
function. The calculations were performed for different pH-values.
We define the cumulative population Ptot as the sum of populations
up to a given number of states K :

Ptot =
K∑

n=1

Pn =
K∑

n=1

exp(−βGn)

Zapprox
(10)

The graphs in Figure 8 show Ptot as a function of K . It can be seen
that the cumulative population converges rapidly to 1.0 for most
pH-values showing that relatively few low energy states are sig-
nificantly populated. Additionally, the contribution of each state to
Ptot can be deduced. The number of significantly populated states
depends on pH. At pH-values of 5.0, 6.0, and 9.0, more states are
significantly populated and thus, the convergence of Ptot is slower
when compared to the convergence at pH = 7.0. Low energy states
of similar energy and thus, similar population result from the titra-
tion behavior of the protonatable residues. For example, aspartate
and glutamate residues commonly titrate at low pH. At high pH,
lysine and arginine residues usually titrate. States that only dif-
fer in the protonation form of these residues are expected to have
similar state energies in the respective pH range. Most other states
are not significantly populated. Thus, at physiological pH, the bR
structure is well represented by the lowest energy state. For a good

representation of the M1 system, however, 10 or even more states
should be considered.

Energy Spectrum of the Protonation States of the BR Photocycle

The energy spectrum obtained by X-DEE provides a picture of the
energy distribution of functionally important states. The calcula-
tions were performed on two BR structures, the bR and M1 system,
that represent the photocycle intermediates before and after the first
proton transfer step. To differentiate between the bR and M1 systems
(BR structures) and the [bR], [M1], and [M2] protonation states, the
latter are enclosed in squared brackets. The [bR] protonation state
is characterized by a protonated retinal Schiff base and a deproto-
nated Asp85. Furthermore, Asp96, Asp115, Arg82, and the proton
release complex are protonated, and Asp212 is unprotonated. The
[M1] protonation state differs from the [bR] protonation state by a
deprotonated retinal Schiff base and a protonated Asp85. The [M2]
protonation state differs from the [M1] protonation state by a depro-
tonated proton release complex. The discussed key residues of the
proton transfer are shown explicitly in Figure 1.

Figure 9 shows the energy of the protonation states for the bR
and the M1 system. The states that represent the lowest [bR], [M1],
and [M2] protonation states are highlighted. As can be seen, for
the bR system the state of lowest energy is the [bR] protonation
state, and the [M1] protonation state is the third state. The energy
difference between these states is approximately 2.5 kcal/mol. The
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Figure 7. Distribution of state energies. All low energy states in an
energy range of 15 kBT300 K are considered for the bR and M1 systems.
The state energies were calculated at pH = 7.0. The insert shows a
magnification of the kBT300 K range from 0 to 4 (x-axis).

Figure 8. Population of states. Cumulative population Ptot as a function
of K [eq. (10)]. (a) bR system and (b) M1 system. The data are shown
for different pH-values.

[M2] protonation state differs from the state of lowest energy by
10.8 kcal/mol. The second state is a [bR] protonation state that
differs from the lowest energy state in the protonation form of an
arginine residue that is exposed to the bulk water and close to the
membrane. This arginine does not interact with the key residues of
proton transfer. For the M1 system, the lowest energy state is the
[M1] protonation state. The [bR] protonation state is the seventh
state differing from the lowest energy state by less than 2 kcal/mol.
The [M2] protonation state is about 3.5 kcal/mol higher in energy
than the state of lowest energy. Thus, for the M1 system the energy
difference between [M1] and [M2] state is significantly smaller than
for the bR system. The second state of the M1 system has a proto-
nated retinal Schiff base and a protonated Asp85, i.e., constituting
a state that does not correspond to a photocycle intermediate proto-
nation state. The following three states are [M1] protonation states
where surface residues change their protonation. The sixth state has
a deprotonated proton release complex, while both retinal Schiff
base and Asp85 are protonated. Like the second state, this state thus
does not correspond to a photocycle intermediate protonation state.

The states of lowest energy of the bR and M1 systems agree
with their experimental classification. For the bR system the next
new intermediate protonation state is [M1], which follows the [bR]
protonation state during the photocycle. For the M1 system, the next
two new intermediate protonation states are [bR], corresponding to
the foregoing state during the photocycle, and the [M2] state that
corresponds to the following state during the photocycle. The energy
differences between the lowest [bR], [M1], and [M2] protonation

Figure 9. Energy spectrum of protonation states of the BR photocy-
cle. For the bR and the M1 systems, all state energies are plotted up
to 4 kcal/mol. The lowest [bR], [M1], and [M2] protonation states are
highlighted. The [bR], [M1], and [M2] protonation states reflect the first
two proton transfer steps of the BR photocycle. The [bR] protonation
state is characterized by a protonated retinal Schiff base and a deproto-
nated Asp85, the [M1] protonation state by a deprotonated retinal Schiff
base and a protonated Asp85, and the [M2] state has in addition lost a
proton in the proton release group. The thin dashed line indicates the
sixth state of the M1 system.
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states are relatively small. Interestingly, for both systems, these low-
est functionally important states differ only in the discussed key
residues of proton transfer. This observation implies that protona-
tion changes of the key residues during the first step of the photocycle
are decoupled from protonation changes of the other protonatable
residues. In this respect, the first proton transfer step of the BR
photocycle might be a rather special case. Other transfer steps may
show a more complex behavior, since protonation changes of func-
tionally relevant groups can be coupled to changes in other groups
that have not yet been considered before. It will be interesting to
analyze whether the behavior of transfer steps both in the BR pho-
tocycle and in other systems is indeed more complex. Since X-DEE
is able to determine gap-free lists of low energy states, it is well
suited for analyzing the energetics of charge transfer processes.

Conclusion

This article introduces the X-DEE algorithm that generates a gap-
free list of low energy states. X-DEE can be applied to all systems
that can be treated with the DEE algorithm. The basic idea of X-
DEE is to exclude a given list of states from the search space that
is explored by DEE. X-DEE determines the state of lowest energy
of all states not in this list. Consecutively adding new states to the
list, X-DEE can be used to build up a gap-free list of low energy
states. Alternatively, X-DEE can be used to complete any list of
low energy states by eliminating gaps. Such lists can for instance
be generated by Monte Carlo sampling. The computational cost of
X-DEE depends linearly on the size of the system and the number
of states to be excluded from the search. For lists of low energy
states that are build up one after the other, we have shown that
the computational cost to determine an additional state remains on
average constant.

In the present work, X-DEE is implemented to generate complete
lists of low energy protonation states. We applied X-DEE to deter-
mine low energy protonation states of two structures of the proton
pump bacteriorhodopsin, a bR and an M1 structure. For both struc-
tures, the calculated state of lowest energy agrees with experimental
data. The list of low energy states allows an analysis of all energet-
ically accessible states. From this analysis the energy difference
between functionally important states could be obtained.

X-DEE will be useful, whenever a set of low energy states is
of interest. In addition to protonation state predictions, X-DEE can
be applied to obtain a complete list of the lowest energy states in
homology modelling and X-ray refinement. A particular interesting
application is enzyme design. A good catalyst should not only stabi-
lize the reactant but also the transition state. X-DEE can be used to
optimize the energy difference between these states and thus can be
a powerful tool in enzyme design. In addition, X-DEE provides use-
ful starting information for the theoretical investigation of kinetic
properties. By providing a gap-free list of low energy states, the
complete pool of possible states is available, i.e., states that may be
occupied by the system. The system kinetics can then be analyzed
by determining the transitions between these states.
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