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Charge transfer through biological macromolecules is essential for many biological processes such as, for
instance, photosynthesis and respiration. Protons or electrons are transferred between titratable residues or
redox-active cofactors, respectively. Transfer rates between these sites depend on the current charge
configuration of neighboring sites. Here, we formulate the kinetics of charge-transfer systems in a microstate
formalism. A unique transfer rate constant can be assigned to the interconversion of microstates. Mutual
interactions between sites participating in the transfer reactions are naturally taken into account. The formalism
is applied to the kinetics of electron transfer in the tetraheme subunit and the special pair of the reaction
center ofBlastochlorisViridis. It is shown that continuum electrostatic calculations can be used in combination
with an existing empirical rate law to obtain electron-transfer rate constants. The re-reduction kinetics of the
photo-oxidized special pair simulated in a microstate formalism is shown to be in good agreement with
experimental data. A flux analysis is used to follow the individual electron-transfer steps.

Introduction

Electron transfer, often coupled to proton transfer, is one of
the fundamental processes of biochemistry. In photosynthesis
or oxidative phosphorylation, for instance, the transfer of
electrons along a chain of redox-active sites enables biochemical
systems to convert light or energy stored in chemical compounds
into energy forms that can be used for other biochemical
reactions. Impressive progress has been made over the last
decades in understanding the underlying processes even on an
atomic level. This progress was supported by the availability
of structures of the involved proteins.1,2 The structural details
allow to interpret data obtained by titration and kinetic experi-
ments in terms of redox-active groups and transfer events
between them. This detailed analysis gives a first idea about
the microscopic picture of the biological function of these
proteins.3 Available structures also enable computational in-
vestigation of these proteins, thus providing a theoretical insight
into their molecular mechanism. Transfer processes require the
knowledge of the equilibrium energetics of the involved states
and the barriers connecting them. According to Marcus theory,
the barrier determining a given electron-transfer rate depends
on the free-energy difference between the donor state and the
acceptor state, on the response of the surrounding media to
changes of the charge distribution, the so-called reorganization
energy, and on the electronic coupling between the donor state
and the acceptor state.4,5 Empirical models based on Marcus
theory proved to be very successful in reproducing electron-
transfer rates for various biological electron-transfer systems.6-9

For systems with well-known equilibrium energetics, even
simulations on complete electron-transfer systems have been
performed.10,11In those simulations, data not directly accessible

to experiment, such as the reorganization energies or interactions
between redox-active groups, have been estimated from kinetic
experiments. Electrostatic calculations have been shown to
provide good estimates of redox potentials and of the interactions
among sites in a protein12,13 as well as estimates of the
reorganization energy.14 These quantities are required to cal-
culate electron-transfer rates. To gain theoretical insight into
transfer processes, it is desirable to simulate electron-transfer
systems without referring to system-specific data derived
experimentally.

It is known from experiments and theoretical calculations that
the mutual interactions between sites of the system are crucial
for an understanding of equilibrium and kinetic properties.15-17

In theoretical calculations of protonation and redox properties
of proteins, these mutual interactions are reflected by describing
the system in terms of microstates, i.e., a state of the system
where every protonatable or redox-active site has a well-defined
charge form.13 Titration properties for single sites are given by
thermal averaging of the contribution of these microstates.
Kinetic simulations, in contrast, commonly refer to transition
events between individual sites.11,18 Although intuitive, such a
description has a major drawback since, in general, it is not
possible to assign a unique rate constant to a charge-transfer
reaction between two given sites. The charge configuration of
the surrounding sites may significantly influence the charge-
transfer rate constant. Thus, in principle, there are as many
charge-transfer rate constants between two given sites as there
are charge configurations of neighboring sites. In the present
work, we formulate kinetic equations of a transfer system in
terms of the microstates already known from titration calcula-
tions. This approach resolves the ambiguities for calculating
rate constants between sites. The rate constants are calculated
using an empirical rate law.8 All energetic parameters required
for rate calculations are obtained from electrostatic calculations.
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To test the accuracy of this theoretical approach, we simulate
the electron-transfer kinetics of the multiheme subunit of
bacterial photosynthetic reaction center (RC) and the so-called
special pair (SP): a chlorophyll dimer.

The RC is an integral membrane protein, which couples the
oxidation of a soluble cytochrome c or an iron sulfur protein
on the periplasmic side of the membrane to the reduction of a
quinone at the cytoplasmic side.3,19 Structures are available for
various systems,20-22 and the equilibrium energetics as well as
transfer kinetics have been accessed in numerous studies.23-26

The core of all reaction centers is formed by three subunits
labeled H, M, and L.3 Following the photoinduced excitation
of the SP an electron is transferred via several redox cofactors
to the quinoneQB. Re-reduction of the SP, i.e., the reduction
after the photo-oxidation, is facilitated either directly by a soluble
protein transport protein (e.g.,Rhodobacter sphaeroides) or via
an additional C-subunit (e.g.,Blastochloris Viridis). The C-
subunit, if present, contains four heme cofactors forming a
transfer chain along the membrane normal. Electrons enter the
C-subunit via a diffusing electron transport protein, which
probably binds close to the outermost heme group.27

Photoinduced oxidation of the SP offers a well-defined
initialization that can be controlled experimentally. Light
absorption at various frequencies allows to follow the changes
in the redox form of various cofactors. Electron transfer in the
C-subunit is, thus, a process well-suited for kinetic analysis.
Consequently, this subsystem was probed not only by equilib-
rium titration23,24 but also by kinetic experiments.25,28 With
decreasing distance from the SP, the midpoint potentials of the
hemes show a peculiar low-high-low-high pattern. Initial
preparation of the system in various redox forms revealed a
strong dependence of the kinetics of the re-reduction of the SP
on the initial state of the system. As shown in ref 25, the
reduction of the SP is the slowest if only the highest potential
heme is reduced (heme c559). The re-reduction of the SP
becomes faster upon reducing additional hemes and is 2 times
faster if the three highest potential hemes are reduced. Since
there is strong evidence that the re-reduction of the SP always
occurs from heme c559,28 this reaction is one example where
charge-transfer rates between given sites depend significantly
on the charges of their neighboring sites. An analysis using
experimental redox potentials in combination with calculated
interaction energies strongly suggests that the electrostatic
interaction between heme c559 and heme c552 is responsible for
the 2-fold increase in the rate.28

In this article, we present a coherent scheme to simulate
complex charge-transfer reactions in biological systems using
coupled differential equations. Charge transfer is described as
a transition from one microstate of the transfer system to another.
Mutual interactions between sites are naturally taken into
account within the presented formalism. Unique transfer rate
constants can be assigned to transitions between microstates.
Electron-transfer rates are estimated in the framework of Marcus
theory. Equilibrium electrostatic calculations are used to access
the energetics and mutual interactions between sites. The
formalism is applied to electron transfer between the four heme
cofactors and the SP of the RC ofB. Viridis. The simulated
re-reduction kinetics of the photo-oxidized SP are in good
agreement with experimental data.

Theory

It is common to describe charge transfer in proteins as a series
of transfer events between groups involved in the transfer
reaction.11,18 For example in electron transfer between the

C-subunit and the SP of the RC, such a description corresponds
to the attempt to estimate rate constants for the transfer between
the heme cofactors and the SP directly. This approach, however,
bears some problems as can be seen for the system depicted in
Figure 2. This system has four redox-active sites and several
possible transitions between them. The state of the system is
described by a four-dimensional vector defining a microstate.
The elements of this vector are either 1 or 0, indicating whether
the sites are reduced or oxidized, respectively. Each transition
represents the transfer of an electron from one redox-active site
to another. Examining, for example, the two transfer reactions
[1001] f [1100] and [0011]f [0110] (blue and red in
Figure 2, respectively), one can see that both events represent
an electron transfer from site four to site two. Nevertheless,
these transfer events are obviously not the same since they differ
in the charge configuration of the other sites. Thus for the
transfer from site four to site two, there are not one but several
rate constants, depending on the number of possible configura-
tions of the remaining sites. Figure 2, however, already suggests
an alternative description of transfer reactions which will be
outlined below.

System Description.Although, in general, no unique rate
constant can be assigned to a charge transfer between two given
sites of a multisite system, there is a unique transition between
two given microstates. Thus, the ambiguities inherent for rates
between individual sites can be resolved if transitions between

Figure 1. (a) Reaction center (RC) with the C-subunit ofBlastochloris
Viridis. (b) Redox cofactors of the RC. The four hemes of the C-subunit
form a near-linear transfer chain along the membrane normal. Electrons
are transferred along this chain to reduce the special pair, SP.

Figure 2. Charge-transfer system described by microstates,xb )
(x1, ...,x4), where 1 or 0 denotes a reduced or oxidized site, respectively.
The state transfer reactions colored blue and red represent charge
transfer from site 4 to site 2, differing in the charge configuration of
surrounding sites.
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microstates of the system are considered. A description based
on microstates is already well established in theoretical calcula-
tions of equilibrium redox and protonation probabilities of
proteins12,13,29,30and was proposed for charge-transfer systems
by Bashford.31,32 Here, we use the concept of microstates to
describe the kinetics of a charge-transfer system. To keep the
notation simple, we formulate the theory for a system of redox-
active groups only, i.e., an electron-transfer system. Treating
proton transfer or coupled systems is, however, straightforward.

We consider a system withN redox-active sites. Each state
of the system can be written as anN-dimensional vectorxb )
(x1, ..., xN), wherexi is 0 or 1 if sitei is oxidized or reduced,
respectively. A transfer event is described as a transition from
one state vector to another. In the most general description,
transitions are possible between any two given states. In practice,
external constraints on the system may restrict the number of
possible transitions. Such restrictions might concern the number
of electrons in the system; i.e., if no electrons are allowed to
enter or leave the system, then only transitions between state
vectors with equal numbers of reduced sites will be allowed. If
concerted transfer reactions cannot occur, then only transitions
that represent a single electron transfer are considered. Such
transfer events have the form (x1, ..., xi, ..., xj, ..., xn) f (x1, ...,
x̃i, ..., x̃j, ..., xn) wherexi and x̃i denote the redox state of sitei
before and after the transfer event, respectively.

Each state of the system has a well-defined energy that
depends on the energetics of the individual sites and the
interaction between sites. The energy of a statexb is given by33

whereF is the Faraday constant,xi denotes the redox state of
the sitei in statexb, x°i is the reference form of sitei, Ei

intr is the
redox potential that sitei would have if all other sites are in
their reference form (intrinsic redox potential),E is the reduction
potential of the solution, andWij represents the interaction of
site i with site j.

Equilibrium Properties. Equilibrium properties of a physical
system are completely determined by the energies of its states.
To keep the notation concise, states will be numbered by Greek
indices; i.e., for state energies,Gν ≡ G(xb). For site indices, the
roman lettersi and j will be used.

The equilibrium probability of a single state is given by

with â ) 1/kT andZ being the partition function of the system

The sum runs over allM possible states. Properties of single
sites can be obtained from eq 2 by summing up the individual
contributions of all states. For example, the probability of site
i being reduced is given by

wherexν,i denotes the redox form of sitei in the charge stateν.
For small systems, this sum can be evaluated explicitly. For
larger systems, Monte Carlo techniques can be invoked to
determine these probabilities.

For a system of interacting sites, the probabilities〈xi〉 can
show a complex shape, thus rendering the assignment of
midpoint potentials difficult or even meaningless.16 The energy
differences between microstates, however, remain well-defined
and thus form a convenient basis to describe the system.

Time Evolution. In the microstate description put forward
in this article, charge-transfer events are described as transitions
between well-defined microstates of a system. We simulate the
time dependence of the population of each microstate using a
master equation

wherePν(t) denotes the probability that the system is in charge
stateν at time t andkνµ denotes the probability per unit time
that the system will change its state fromµ to ν. The summation
runs over all possible statesµ. Simulating charge transfer by
eq 5 assumes that these processes can be described as a
(stochastic) Markov process. This assumption implies that the
probability of a given charge transfer only depends on the
current state of the system and not on the way the system
reached this state. Our approach excludes systems with strongly
coupled microstates, e.g., delocalized charge systems, where the
charge distribution can only be adequately described by a
coherent superposition of various microstates. Delocalization
of charges one mainly expects for strongly coupled electron-
transfer systems due to the small mass of the electron. In
biological systems, however, one often encounters long-range
electron transfer, which is accurately described in the framework
of Marcus theory. Thus, biological electron-transfer systems are
well described in the nonadiabatic picture, i.e., in the weak-
coupling limit.

Equation 5 is formally equivalent to kinetic rate equations
known from physical chemistry. However, it should be noted
that eq 5 describes the time evolution of the probability
distribution of microstates of the system. For these microstates,
as argued above, energiesGν and transition probabilitieskνµ
can be assigned unambiguously. The correct time-dependent
probability of finding a single site in the reduced form can be
obtained by summing up individual contributions from the time-
dependent probabilitiesPν(t)

Equation 5 is a coupled system of linear differential equations
with constant coefficients. As explained in more detail in the
Methods section, there is an analytical solution for nondegen-
erate systems that can be written as

whereRµ is theµth eigenvalue of the matrix associated with eq
5, Vµ,ν is theνth element of theµth eigenvector of this matrix,
and cµ’s are integration constants determined from the initial
condition of the system.

Flux Analysis. For analyzing a complex charge-transfer
system, it is of particular interest to follow the flow of charges

d

dt
Pν(t) ) ∑

µ)1

M

kνµPµ(t) - ∑
µ)1

M

kµνPν(t) (5)

〈xi〉(t) ) ∑
ν

M

xν,iPν(t) (6)

Pν(t) ) ∑
µ

M

cµVµ,ν eRµt (7)

G(xb) ) ∑
i)1

N

(xi - x°i)F(Ei
intr - E)

+
1

2
∑
i)1

N

∑
j)1

N

(xi - x°i)(xj - x°i)Wij (1)

Pν
eq ) e-âGν

Z
(2)

Z ) ∑
ν)1

M

e-âGν (3)

〈xi〉 ) ∑
ν

M

xν,iPν
eq (4)
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through the system, i.e., the charge flux. The flux from stateν
to stateµ is determined by the population of stateν times the
probability per unit time that stateν will change into state
µ, i.e., bykµνPν(t). The net flux between statesν andµ is thus
given by

In the following, this flux between two states will be termed
interstate flux. The interstate flux (eq 8) is positive if there is a
net flux from stateµ to stateν.

In the common case, where the transition betweenν andµ
represents the transfer of a single charge between sitei and site
j, this interstate flux corresponds to a flux between sitei and
site j, Jij

(νµ) ≡ Jνµ. The index (νµ) here indicates that this
contribution to the total flux between sitesi and j is related to
the interstate fluxJνµ. In general, there will be several interstate
fluxes contributing to the charge transfer between sitesi andj.
The total net flux between these sitesJij due to the interstate
fluxes Jνµ is therefore given by the sum over interstate fluxes

Here the summation index (νµ) indicates that the sum has to
be taken over all contributing interstate fluxes. The fluxesJij

will be referred to as intersite fluxes. Equipped with these
elementary fluxes between pairs of sites, the complete flux
network of the system can be deduced.

Calculation of the Rate Constantskνµ. The outlined theory
is directly applicable to a large class of reaction systems such
as, for example, proton and electron transfer in proteins. The
determination of the rate constantskνµ will, however, be specific
for the particular reactions that should be simulated. For
electron-transfer systems, continuum electrostatic calculations
in combination with existing empirical rate laws6,8 can be used
to obtain electron-transfer rates in good agreement with
experimental data. Three factors mainly govern the rate constants
of biological electron-transfer reactions: the energy difference
between the donor state and the acceptor state, the environmental
polarization (reorganization energy), and the electronic coupling
between the redox sites. The energy barrier for the transfer
process is given in the framework of Marcus theory as

where∆G° is the energy difference between the donor state
and the acceptor state andλ is the so-called reorganization
energy. The electronic coupling between the redox sites is
commonly accounted for by a distance-dependent exponential
function A exp(-â(R - Ro)) where R is the edge-to-edge
distance between cofactors,Ro represents a Van der Waals
contact distance, andA represents an optimal rate. These aspects
of biological electron transfer have been successfully combined
to formulate a heuristic rate law applicable to long-range electron
transfer6,8

where kex and ken are the rate constants for exothermic and
endothermic electron-transfer reactions, respectively.

The free energy∆G° for a transition between two statesν
andµ can be calculated within the electrostatic model using eq
1. The reorganization energyλ contains two contributions,λ )
λo + λi, whereλo is the solvent reorganization energy andλi

accounts for changes of the nuclear degrees of freedom between
the donor site and the acceptor site.λo was shown to be
accessible to equilibrium calculations34 and formulated espe-
cially suited for Poisson-Boltzmann calculations14

∆qi
ad is the change in charge of atomi when going from the

donor to the acceptor state. The potentialsφad
opt and φad are

generated by the charge distribution∆F ) Fa - Fd in a low
(opt) and a high dielectric environment, respectively. Here,Fa

andFd denote the charge distributions of the acceptor and donor
states, respectively. The permittivity constant for the low
dielectric environment reflects the electronic polarizability while
the permittivity constant for the high dielectric environment
accounts for the nuclear and electronic polarizabilities. The
solvent reorganization energy is given by the difference in
solvation free energies of the charge distribution∆F between a
low and a high dielectric environment.λi’s can be estimated by
density functional theory (DFT) calculations but are often found
to be significantly smaller than the solvent reorganization
energy.35-38 The inner sphere reorganization energy can be
calculated from density functional theory as

whereEbond is the total DFT energy of the two sites andrbd and
rba correspond to the optimized geometries of the sites in the
donor and acceptor states, respectively. Hence, the inner sphere
reorganization energy is given by the difference in bonding
energy between the donor and the acceptor geometries while
the sites are kept in their acceptor state charge distribution.37,38

In this formulation, the total reorganization energy depends
only on the charge difference between two states. Thus, the
electron transfer between sitesi andj is always connected with
the same reorganization energy irrespective of the states that
are converted into each other.

Methods

Structures and Parameters.In the calculations, we used
the structure of the RC ofBlastochloris Viridis (PDB code
1PRC)39 having a resolution of 2.3 Å. Hydrogens were added
with HBUILD40 in CHARMM41 and subsequently minimized
using the CHARMM force field.42

The atomic partial charges for most atoms were taken from
the CHARMM force field. The partial charges of the hemes,
the special pair, and the linked residues were obtained from
density functional calculations (functionals VWN43 and PW9144)
using the ADF program package.45 The electrostatic potentials
obtained from the density functional calculation were fitted using
the CHELPG algorithm46 combined with a singular value
decomposition.47 The charges of all other cofactors are the same
as those in previous calculations.48-50

Continuum Electrostatic Calculations and Equilibrium
Redox Titration. All of the electrostatic calculations were done

Jνµ(t) ) kνµPµ(t) - kµνPν(t) (8)

Jij ) ∑
(νµ)

Jij
(νµ) ) ∑

(νµ)

Jνµ (9)

∆Gq )
(∆G° + λ)2

4λ
(10)

log(kex) ) 13 - 0.6(R - 3.6)- 3.1
(∆G° + λ)2

λ

log(ken) ) 13 - 0.6(R - 3.6)- 3.1
(-∆G° + λ)2

λ
- ∆G°

0.06
(11)

λo )
1

2
∑

i

K

(φad
opt( rbi) - φad( rbi))∆qi

ad (12)

λi ) Ebond( rbd,Fa) - Ebond( rba,Fa) (13)
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using the program suite MEAD,12,51 which uses a finite
difference method to determine the electrostatic potential. For
the calculations of the intrinsic redox potentials and the
interaction energies, the dielectric constant of the protein and
the dielectric constant of water were set to 4.0 and 80.0,
respectively. The ionic strength was set to 0.1 M. For the protein,
the electrostatic potential was calculated by focusing using three
grids of 1413, 1213, and 1213 grid points and grid spacings of
of 2.0, 1.0, and 0.25 Å, respectively. For the model compounds,
the electrostatic potential was calculated by focusing using two
grids of 1213 grid points and grid spacings of of 1.0 and
0.25 Å. The first grid was centered on the protein or the model
compound; the other grids were centered on the titratable
group.

To calculate the energy of the different redox states, we first
determined the protonation of the different protonatable residues
in the protein using continuum electrostatics and Monte Carlo
simulations.52 We then fixed the highest populated protonation
state to calculate the energy of the different redox states. The
solution redox potentials of the special pair, of the bis-histidinyl
heme, and of the metioninyl-histidinyl heme were adjusted to
fit the equilibrium redox behavior as closely as possible. The
equilibrium titration curves and the populations of the different
redox states in dependence on the solution redox potential have
been calculated by a statistical mechanics averaging.

Reorganization Energies.For the calculation of the solvent
reorganization energy, we used a dielectric constant of 1.0 for
the cofactor, 2.0 for the electronic dielectric constant, 4.0 for
the total dielectric constant of the protein, and 80.0 for the water.
In the calculation of the reaction field potential in the high
dielectric environment, an ionic strength of 0.1 M was consid-
ered. The electrostatic potential was calculated by focusing using
three grids of 1813, 1813, and 3013 grid points and grid spacings
of of 2.0, 1.0, and 0.25 Å, respectively. The first grid was
centered the on the geometric center of the protein; the other
two grids were centered on the geometric centers of the cofactors
between which the electron transfer takes place.

Inner sphere reorganization energies were computed from
density functional calculations (functionals VWN43 and Becke
Perdew53 with a TZ2P basis set) using the ADF program.45 The
interaction between the sites influences the inner sphere
reorganization energyλi only slightly. Therefore,λi was
calculated as the sum of the contributions of the two cofactors
involved in the transfer reaction.38,54The model sites consisted
of the metal ions, the porphyrins, and the side chains axially
coordinating the metal ions or binding the heme porphyrins.
The amino acid side chains were cut at the CR atom, and their
Câ atoms were fixed in their crystal structure positions. The
heme propionates were cut off and substituted by hydrogen
atoms. The phytyl tails of the special pair were truncated to
methyl groups. Geometry optimizations with stringent conver-
gence criteria were performed for each model site in its reduced
and oxidized forms. Starting from the geometry-optimized
structures, single-point calculations were performed to obtain
the bonding energies of the model systems having the optimized
geometry of one redox form and the respective opposite charge
distribution.

Solution of the Differential Equation. The master equation
in eq 5 can be rewritten as

whereM is the number of states. For simplicity, we call the
probability vectorp, the matrix of rate constantsA, and its
elementsaνµ; i.e., eq 14 becomes

The diagonal elementsaνν of matrix A are the negative of the
sums over all of the rate constantskµν diminishing the population
of stateν. The diagonal elementsaνν, therefore, represent a decay
rate for the population of state vectorν. The off-diagonal
elementaνµ is the rate constantkνµ for the conversion of state
µ to stateν.

Equation 14 is a homogeneous system of first-order linear
ordinary differential equations and can be solved formally as

A detailed balance criterium ensures that matrixA can be
diagonalized, and if all eigenvalues are nondegenerate, then the
solution can be written in the especially simple form

where Rµ and vµ are the eigenvalue and the corresponding
eigenvector of matrixA, respectively, andcµ’s are constantsthat
can be determined from the initial concentrationsp at t ) 0
(i.e., all the terms eRµt ) 1)

whereV is a matrix containing the eigenvectors ofA. For the
general case of degenerate eigenvalues, eq 17 has to be slightly
modified.55 For a more detailed discussion of master equations
and their general behaviors, see, for example, refs 55 and 56.

To solve the system of differential equations in eq 14 in the
form of eq 17, the eigenvalues and the eigenvectors of matrix
A were determined using the routine DGEEV of the LAPACK
library.57 The coefficientscµ are determined by solving eq 18
using standard numerical methods (lower and upper triangular
decomposition).58

Results and Discussion

In this article, we use a microstate formalism to simulate the
kinetics of electron transfer between the C-subunit and the SP

(dP1(t)

dt
···

dPν(t)

dt
···

dPM(t)

dt

) )

(- ∑
µ)1

M

kµ1 ‚‚‚ k1µ ‚‚‚ k1M

··· ··· ··· ··· ···

kν1 ‚‚‚ - ∑
µ)1

M

kµν ‚‚‚ kνM

··· ··· ··· ··· ···

kM1 ‚‚‚ kMν ‚‚‚ - ∑
µ)1

M

kµM

)(P1(t)
···

Pν(t)
···

PM(t) ) (14)

dp(t)
dt

) Ap(t) (15)

p(t) ) exp(At)p(0) (16)

p(t) ) ∑
µ)1

M

cµvµ eRµt (17)

p(0) ) Vc (18)
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of the RC. Poisson-Boltzmann electrostatics in combination
with an empirical rate law provide transition probabilities
between microstates. These rate constants are used to simulate
the kinetic behavior of this system using coupled differential
equations. The resulting re-reduction kinetics of the special pair
SP reproduces the redox state dependence seen in experiments
and are shown to be in quantitative agreement with the kinetic
data obtained in ref. 25.

Midpoint Potentials. A prerequisite for a good description
of the kinetics is to accurately account for equilibrium properties.
Therefore, we compute first the equilibrium midpoint potentials
for all four hemes and the special pair SP using Poisson-
Boltzmann electrostatics.

Figure 3 depicts the occupancies of those microstates that
were found to be significantly populated. Experimentally
observed Nernst-like titration curves are obtained for individual
sites by summing up the contributions of these microstates as
stated in eq 4. Table 1 lists the calculated midpoint potentials,
which are compared to the experimental values. A good overall
agreement is achieved; the characteristic high-low-high-low
pattern with respect to the distance from the special pair is
clearly reproduced, and the numerical values of all hemes are
within the range of accuracy commonly achieved by electrostatic
theory.59 The same intrinsic redox potentials and interaction
energies that allow us to reproduce the redox-titration behavior
of the RC are used to calculate microscopic redox potentials
(Table 2). These microscopic redox potentials are required to
compute rate constants.

Reorganization Energies.The next important parameter
determining electron-transfer rate constants is the reorganization
energy. Table 3 lists the calculated reorganization energies and
the edge-to-edge distances between cofactors. The total reor-
ganization energyλ ) λo + λi varies between 0.48- 0.66 eV.
Experimental values for the reorganization energies for the
electron transfer from the C-subunit to the SP and within the
C-subunit do not exist. Reorganization energies obtained on
other biological systems have been reported in the range between
0.2 and 1.2 eV.14,60-62 Thus, although the reorganization energies
obtained for our system cannot directly be compared to
experimental data, the values obtained from our calculations
are in agreement with literature values reported for biological
transfer systems.

Kinetics. The midpoint potentials in Table 1 cannot directly
be used to obtain the reaction free energy of a transfer event as
necessary for eq 11. Midpoint potentials reflect the energetic
cost to reduce a particular site while all sites are in equilibrium
with the solution reduction potential. In contrast, in eq 11 the
free energy for transferring an electron refers to the free-energy
difference between two states differing in their charge config-
uration (microstate) by exactly the transferred electron. The latter
energy can be directly related to a microscopic equilibrium
constant, while the relation between a midpoint potential and a
real equilibrium constant is not straightforward.16

To demonstrate that Poisson-Boltzmann electrostatics can
be used in a microstate formalism to obtain valid descriptions
of the kinetic properties of electron-transfer systems, we
compare the re-reduction kinetics of the SP to the experimentally
observed half-life of the oxidized state.25 Ortega et al. exposed
the reaction center ofB. Viridis to different redox potentials,
thus preparing the system in charge configurations with 4, 3,
and 2 electrons distributed over the system consisting of the
four hemes and the SP. The re-reduction kinetics of the SP were
measured after photoinduced oxidation.

To mimic this experimental setup, four simulations were
performed. First, all four hemes were set to their reduced forms,
the SP was set to its oxidized form, and the kinetics of this
system were simulated according to eq 7. The kinetics of this
first re-reduction reaction were not measured experimentally.
The next three simulations started from the equilibrium distribu-

Figure 3. (a) Occupancies of significantly populated microstates, where
1 denotes reduced whereas 0 indicates the oxidized state. The state
vector is given in the order (SP,c559,c552,c556,c554). (b) Titration curves
for individual sites were calculated from eq 4. The dashed lines indicate
the midpoint potentials as measured in titration experiments.

TABLE 1: Calculated Equilibrium Midpoint Potentials
Compared to Experimental Values

Em (meV) SP c559 c552 c556 c554

calculated 500 359 27 278 -35
Fritzsch et al.24 500 370 10 300 -60
Dracheva et al.23 500 380 20 310 -60

TABLE 2: Intrinsic Redox Potentials and Interaction
Energies for the SP and the Four Heme Groups of the
C-Subunit of B. Wiridisa

Eintr SP c559 c552 c556 c554

SP 451 0
c559 286 39 0
c552 23 6 67 0
c556 170 1 7 51 0
c554 -36 0.1 1 5 58 0

a All values are given in meV.

TABLE 3: Solvent and Inner Sphere Reorganization
Energies and Cofactor Distances

site 1 site 2 λo (eV) λi (eV) R (Å)

SP c559 0.51 0.115 12.1
SP c552 0.58 0.100 24.6
SP c556 0.59 0.115 37.4
SP c554 0.59 0.115 50.9
c559 c552 0.44 0.063 6.9
c559 c556 0.57 0.076 21.5
c559 c554 0.59 0.076 35.4
c552 c556 0.46 0.063 8.1
c552 c554 0.57 0.063 21.5
c556 c554 0.41 0.076 7.1
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tion of the previous run and setting the SP to its oxidized state,
thus resembling a system with 4, 3, or 2 electrons present prior
to instantaneous photo-oxidation of the SP.

An overview of the complete kinetics of the system is shown
in Figure 4. Each state is characterized by a state vector where
1 denotes a reduced site and 0 an oxidized site. The order of

sites is given from left to right: SP, heme c559, heme c552, heme
c556, and heme c554. This order corresponds to the spatial
arrangement of the redox sites along the membrane normal.
Figures 4a-d correspond to simulations with 4, 3, 2, and 1
electrons present after photo-oxidation of the SP, respectively.
On the left side of Figure 4, the time-dependent probability

Figure 4. Left column depicting the time-dependent probability distribution of microstates after photo-oxidation of the SP simulated by eq 5. The
state vector is given in the order (SP,c559,c552,c556,c554). The associated oxidation probabilities of the four hemes and the SP are depicted in the right
column. Data shown in symbols do not significantly differ from either 0 or 1. (a-d) The initial setup consists of 4, 3, 2, or 1 electrons distributed
among the four hemes, respectively. Initial distributions for the microstates were taken from an equilibrium distribution prior to photo-oxidation of
the SP.
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distribution of the accessible microstates is shown. The corre-
sponding oxidation probabilities for the heme active sites and
the SP are shown on the right side. In all simulations, it is
observed that only a limited number of microstates contributes
significantly to the probability distribution in the pico- to
microsecond time scale.

To obtain half-lives for the oxidized state of the SP that can
be compared to the experimental data, we performed an
exponential fit on the re-reduction curves of the SP. For all our
simulations a one-exponential fit was sufficient to obtain good
agreement with the simulation data. The seemingly nonexpo-
nential character of the SP re-reduction in Figures 4c and 4d
originates from the fact that the SP is not fully reduced in
equilibrium; i.e., the re-reduction curve reaches a constant level
above zero. This behavior was taken into account by fitting the
re-reduction kinetics of the SP to the function

whereR is the decay constant of the photo-oxidized form of
the SP anda/(1 + a) represents its equilibrium probability. Table
4 lists the half-lives derived from this one-exponential fit of
our simulation data compared to the half-lives of the very fast
component obtained by Ortega et al. All values are within a
factor of 1.5 compared to the experimental values. Furthermore,
the increase of the lifetime upon decreasing the number of
electrons in the system is clearly reproduced. This increase
indicates that interactions among sites and therefore the interplay
of the various possible charge states within the transfer system
are reliably reproduced in the microstate formalism presented
here. Thus, theoretical investigations on the basis of the theory
outlined in this article promise to shed light on the function of
more complicated reactions such as coupled transfer of protons
and electrons.

Given the good agreement with experimental data, we further
analyze the simulation by asking specific questions such as
which microstates participate in the transfer process and which
interactions are responsible for the observed changes in the
kinetic behavior. In the present example, the simplicity of the
system allows for straightforward answers of both questions
within the present model. As was already suggested on the basis
of electrostatic calculations in combination with experimental
midpoint potentials, the change in redox kinetics upon reducing
additional heme groups can be understood in terms of electro-
static interactions between the heme groups.28 Reduction of
heme c552 and heme c556 destabilizes the reduced form of heme
c559 and thus increases the transfer rate constants between heme
c559 and the SP. Table 5 lists microscopic rates related to direct
electron transfer from heme c559 to the SP. These rate constants
only differ in the interactions between heme groups being in
different redox forms. Since the transfer from heme c559 to the
SP is rate-determining for the reduction kinetics of the SP, they
clearly indicate that the purely electrostatic interactions in the
present model account for the experimentally observed depen-
dence of lifetimes on the number of electrons in the system.

Flux Analysis. A picture of the individual transfer steps that
contribute to the overall kinetic behavior can be obtained with
a flux analysis as described in the Theory section. Figure 5

depicts the time-dependent fluxes for the simulations shown in
Figure 4. Interstate fluxes shown in the left column are
calculated from eq 8, and the intersite fluxes in the right column
are calculated from eq 9. Only a limited number of interstate
fluxes contribute significantly to the derived intersite fluxes,
since only transfer events between next-neighbor sites contribute
to the electron transfer between the four hemes and the SP on
the sub-microsecond time scale. The next-neighbor constraint,
in turn, is a consequence of the strong dependence of the
electron-transfer rate constants on the cofactor distances as
expressed in eq 11. This strong dependence on the cofactor
distances led to the suggestion that these distances are the
primary design factor in electron-transfer proteins.8,9

Details of the transfer steps present in our simulations are
depicted in Figure 6. For each of the four simulations, all
possible microstates are depicted (Figures 4a-d). Filled and
open circles denote the reduced and oxidized forms of a redox
site, respectively. The order of the microstates is given from
top to bottom as heme c554, heme c556, heme c552, heme c559,
and the SP. The microstates depicted in the uppermost rows of
each graph a-d represent the starting configurations of the
simulations. The microstates shown in the bottom rows represent
the populations of microstates present at the end of the
simulations. Only microstates contributing more than 0.1% to
the starting or end configurations are considered. The row(s) in
between the top and the bottom rows show all other possible
microstates of the simulation. For the starting and final
microstates the starting and final probabilities (in %) are given
in parentheses, respectively. For intermediate states, the values
in parentheses denote the maximal probability observed during
the simulation. Fluxes contributing significantly are indicated
by arrows, and their maximum values are given. Each arrow
indicates a net transition from one microstate to another, i.e.,
from one charge configuration of the system to another. As
explained in detail, such a transition represents a transfer of an
electron from one redox site to another and thus contributes to
an intersite flux. This contribution is indicated by the color of
the arrows, where black indicates electron transfer between the
SP and heme c559, blue indicates transfer between heme c559

and heme c552, red indicates transfer between heme c552 and
heme c556, and green indicates transfer between heme c556 and
heme c554.

The first simulation, Figure 6a, already gives an example of
the next-neighbor character of electron transfer between the four
hemes and the SP. Initially, all four hemes are reduced, and
the SP is oxidized. Re-reduction of the SP, as known from
experiments, occurs via an electron transfer from heme c559,
i.e., via the microstate transition (0,1,1,1,1)f (1,0,1,1,1). This
initial transfer is rapidly followed by an electron transfer from
heme c552 to heme c559 ((1,0,1,1,1)f (1,1,0,1,1)). The necessary
intermediate state (1,0,1,1,1) is only transiently populated
(maximum≈ 0.01%) and could thus not be observed experi-
mentally. Further relaxation of the system toward its equilibrium
distribution again follows the next-neighbor rule. A direct
electron transfer from heme c554 to heme c552, although

TABLE 4: Half-Life of the Photo-oxidated State of the SP
Dependent on the Number of Electrons in the System

t1/2 (s) 4 3 2 1

experiment25 115× 10-9 190× 10-9 230× 10-9

simulation 93× 10-9 99× 10-9 187× 10-9 210× 10-9

f(t) ) 1
1 + a

(a + e-Rt) (19)

TABLE 5: Transfer Rate Constants and Associated
Microscopic Half-Lives for State Transitions Representing
Electron Transfer from Heme c559 to the SP

states

donor acceptor kµν (s-1) t1/2
micro (s) t1/2 (s)

01111 10111 7.4× 106 93× 10-9 93× 10-9

01110 10110 7.4× 106 93× 10-9 99× 10-9

01010 10010 3.7× 106 187× 10-9 187× 10-9

01000 10000 3.5× 106 198× 10-9 220× 10-9
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energetically favorable, does not occur due to the large distance
between these cofactors (∼37 Å). As a consequence, the
transition to the lowest-energy state (1,1,1,1,0) occurs via an
uphill transfer step from heme c556 to heme c552 ((1,1,0,1,1)f
(1,1,1,0,1)) followed by the energetically favorable transfer from
heme c554 to heme c556 ((1,1,1,0,1)f (1,1,1,1,0)). Again, the
intermediate state is only transiently populated and thus not
accessible to experimental observations.

The second simulation as seen in Figure 4b presents a similar
picture for the time dependence of the population of accessible
microstates. Starting from a population of the two microstates
(0,1,1,1,0) (90%) and (0,1,0,1,1) (10%) the system relaxes
toward an equilibrium distribution that is mainly given by one
microstate (1,1,0,1,0). The underlying transfer dynamics of the
system as depicted in Figure 6b, however, are considerably more
complex. The highly populated initial state (0,1,1,1,0) can

Figure 5. Probability fluxes for the kinetic simulations of Figure 4. Interstate fluxes shown in the left column were calculated according to eq 8.
Intersite fluxes calculated from eq 9 are shown in the right column. The state vector is given in the order (SP,c559,c552,c556,c554).
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rapidly decay into the final state via just one intermediate,
(1,0,1,1,0). In contrast, the initial state (0,1,0,1,1) has to relax
toward the final state via a succession of several intermediates
due to the next-neighbor restriction discussed already. Again,
these intermediate states are only transiently populated. Each
interstate flux into one of these intermediates is accompanied
by an equally high flux out of these intermediates. For example,
the transition from the initial state to the intermediate (1,0,0,1,1)
is rapidly followed by a transition to a second intermediate state
(1,0,1,0,1). This intermediate state in turn decays either into
state (1,0,1,1,0) via an electron transfer from heme c554 to heme
c556 or alternatively to state (1,1,0,0,1) via electron transfer from
heme c552 to heme c559. As can be seen from the arrow colors
in Figure 6b, electron transfer between two given sites is
represented by more than one interstate transition. This multi-
plicity is the main obstacle in defining rate constants for transfer
reactions between two given sites. The presented microstate
formalism, however, naturally incorporates this multiplicity and
thus avoids the common ambiguities.

The experimental setup resembled in the last two simulations
c and d, i.e., transfer with two or one reduced cofactors present

in the system, has been widely discussed in the context of uphill
electron transfer.10,28,63In Figure 4c, for example, it can be seen
that the reduction of the SP is accompanied by the (partial)
oxidation of heme c559and heme c556whereas heme c552 remains
basically oxidized throughout. This behavior, however, must
not be taken as evidence for electron transfer between heme
c556and heme c559or even between heme c556and the SP. Again,
the distances between heme c556 and heme c559 (∼22 Å) and
between heme c556 and the SP (∼37 Å) render electron-transfer
rates based on eq 11 too slow to contribute significantly to the
re-reduction kinetics of the SP. This result is in agreement with
mutational studies on the RC ofB. Viridis that suggested that
electron transfer always occurs along the sequence c556-c552-
c559-SP.28 Thus, oxidation of heme c556 should be accompanied
by reduction of heme c552 although heme c552 is observed to
remain basically oxidized throughout the simulation. This
apparent contradiction arising from the experimentally accessible
data can be readily resolved in the microstate formalism. As
discussed already, only next-neighbor electron-transfer contrib-
utes to the transitions in our simulations due to the strong
distance dependence in the rate formula (eq 11). The intermedi-

Figure 6. Reaction scheme for the charge transfer in the RC as deduced from the flux analysis of our simulations. Each oval represents a microstate
of the system. The circles symbolize the redox cofactors in the order heme c554, heme c556, heme c552, heme c559, and SP from the top to the bottom.
Filled and open circles denote the reduced and oxidized forms of the sites, respectively. Panels a-d describe the reaction scheme after the first to
fourth flash, respectively. Each has a particular order: Initial states are on top, intermediate states are in the middle, and final states are at the
bottom. The initial, final, and maximum probabilities are given in parenthesis for initial, final, and intermediate microstates, respectively. Interstate
fluxes significantly contributing to the kinetic behavior are indicated by arrows. The associated intersite transfer is indicated by color: Black
indicates transfer between heme c559 and the SP, blue between heme c552 and heme c559, red between heme c556 and heme c552, and green between
heme c554 and heme c556.
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ate states showing a reduced heme c552, however, are only
transiently populated. The maximal probabilities for the inter-
mediates in the simulations of Figure 4c and 4d amount to
∼0.02% for states (1,0,1,0,0) and (0,0,1,0,0), and thus, reduction
of heme c552 is hardly accessible to experimental observation
in these kinetic experiments.

Conclusions

In the present article, we present a microstate formalism to
simulate charge-transfer systems. The system is described by
state vectors, indicating the redox form of each site possibly
taking part in the transfer process. In this approach, charge
transfer is not primarily described as a transfer of a charge from
one site to another but as a change in the state vector of the
complete system. Thus, there are as many possible transfer
reactions between two given sites as there are possible con-
figurations of all other sites. A microstate formalism naturally
takes into account the dependence of transfer rates between sites
on their interaction with the surrounding charges. For the
interconversion between two microstates, a unique charge-
transfer rate can be defined. This formalism allows us to describe
the kinetics of a charge-transfer system by a master equation
describing the time evolution of microstates. The possibly
complex kinetic behavior of single sites of the system can be
deduced from the time-dependent probability distribution of
microstates. Charge flow within the system can be investigated
by calculating elementary fluxes between microstates and
relating them to the accompanied charge transfer between sites.
Thus, the transfer network can be built up by elementary fluxes.
Poisson-Boltzmann electrostatics together with existing heu-
ristic rate laws6,8 can be used to describe biological electron-
transfer systems. The overall kinetics of the system are simulated
using coupled differential equations. In this work, the re-
reduction of the SP by the C-subunit of the RC serves as a
model system to compare the simulations with experiments. All
parameters required for calculating electron-transfer rates can
be obtained from calculations using structural data. It is therefore
possible to simulate the kinetics of an electron-transfer system
solely based on structural information without referring to
additional experimental data. Our simulations reproduce the
experimentally observed re-reduction kinetics of the SP. The
calculated lifetimes of the photo-oxidized state of the SP agree
well with the experimentally determined values.

All calculations put together in this article to obtain a coherent
scheme for simulating the kinetics of an electron-transfer system
use standard computational techniques that have been demon-
strated to reproduce experimental results for a broad range of
biological electron-transfer systems. The formalism presented
here should, thus, be readily applicable to a large class of related
charge-transfer systems.
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